• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modulators of Neuroimmune Interactions Induced by Toxoplasma gondii

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20873_sip1_m.pdf
    Size:
    31.95Mb
    Format:
    PDF
    Download
    Author
    Merritt, Emily Frances
    Issue Date
    2023
    Keywords
    neuroimmunology
    Toxoplasma gondii
    Advisor
    Koshy, Anita A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Toxoplasma gondii is a common, intracellular parasite that establishes a long-terminfection in neurons in the central nervous system (CNS). Infections are often asymptomatic; however, in individuals lacking a T cell response Toxoplasma infection can lead to uncontrolled neuroinflammation, and potentially death. A long-standing question in the field is how Toxoplasma survives long term within the host. One hypothesis suggests that long term persistence is enabled by parasites residing in neurons because neurons do not have the same cell-intrinsic immune capabilities to clear parasites as non-neuronal cells (i.e., neurons are thought to lack major histocompatibility complex as an immune receptor to interact with T cells and are considered unable to respond to cytokine). Another hypothesis is that Toxoplasma modifies neurons to allow persistence by manipulating neurons through injection of Toxoplasma effector proteins, known as ROPs and GRAs, which are secreted into host cells during infection and can alter host cell signaling. Given we know Toxoplasma modifies many signaling pathways through these effector proteins, we set out to identify novel pathways that may aid in parasite persistence by transcriptionally profiling neurons that have been injected with Toxoplasma proteins. We infected Cre reporter mice, which only express a green fluorescent protein (GFP) after Cre mediated recombination, with Toxoplasma strains that have Cre recombinase fused to an effector protein that is secreted into host cells prior to invasion. Therefore, in the brain we can detect Toxoplasma injected neurons (TINs). Laser capture microdissection allowed us to isolate these injected neurons from an infected brain and perform transcriptional analysis to compare the transcripts of these injected neurons to neighboring neurons that have not interacted with parasites (Bystander neurons). Pathway analysis indicated a high level of T cell transcripts within the TINs transcriptome compared to the Bystander neurons transcriptome. Analysis of immunofluorescently stained infected brain sections was consistent with T cells being in closer proximity to TINs compared to Bystander neurons. This extreme proximity suggested potential MHCI-T cell receptor interactions. To test this idea, we infected primary neuronal cultures with parasites expressing the model antigen, OVA, and cocultured antigen specific T cells with these infected cultures. We found T cells could be activated by the infected neuronal cultures, indicating neurons are capable of presenting peptide on MHCI to T cells. To explore the ability of neurons to clear parasites (a possible outcome of T cell-neuron interactions), we infected Cre reporter mice with a strain of Toxoplasma that only triggers Cre mediated recombination in host cells after a successful invasion (GCre). We generated 200μm thick brain sections from these mice, optically cleared the sections using PACT clearing, and generated 3D reconstructions of the GFP+ neurons to determine if they actively harbor parasites. Approximately 50% of rendered neurons did not harbor parasites, indicating that neurons are capable of clearing Toxoplasma in vivo. Lastly, within this dissertation, I explored the importance of a specific effector protein, GRA15, and how it contributes to parasite persistence. Analysis of the peripheral immune response and parasite burden in the brain indicates that GRA15—an effector that causes polarization to classically activated macrophages—is does not significantly influence parasite dissemination and persistence. Overall, this dissertation uses Toxoplasma as a tool to investigate the immune capacity of neurons. We find that neurons can interact with T cells and possess competence at clearing Toxoplasma. Future directions include describing how utilizing tools I generated will allow others to determine how T cell recognition of and activation by antigen generated at different life-stages of Toxoplasma contributes to parasite clearance vs persistence.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Immunobiology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.