Show simple item record

dc.contributor.authorJellicoe, Keegan
dc.contributor.authorMcIntosh, Jennifer C.
dc.contributor.authorFerguson, Grant
dc.date.accessioned2021-10-13T23:37:08Z
dc.date.available2021-10-13T23:37:08Z
dc.date.issued2021-09-24
dc.identifier.citationJellicoe, K., McIntosh, J. C., & Ferguson, G. (2021). Changes in Deep Groundwater Flow Patterns Related to Oil and Gas Activities. Groundwater.en_US
dc.identifier.issn0017-467X
dc.identifier.doi10.1111/gwat.13136
dc.identifier.urihttp://hdl.handle.net/10150/662076
dc.description.abstractLarge volumes of saline formation water are both produced from and injected into sedimentary basins as a by-product of oil and gas production. Despite this, the location of production and injection wells has not been studied in detail at the regional scale and the effects on deep groundwater flow patterns (i.e., below the base of groundwater protection) possibly driving fluid flow toward shallow aquifers remain uncertain. Even where injection and production volumes are equal at the basin scale, local changes in hydraulic head can occur due to the distribution of production and injection wells. In the Canadian portion of the Williston Basin, over 4.6 × 109 m3 of water has been co-produced with 5.4 × 108 m3 of oil, and over 5.5 × 109 m3 of water has been injected into the subsurface for salt water disposal or enhanced oil recovery. Despite approximately equal values of produced and injected fluids at the sedimentary basin scale over the history of development, cumulative fluid deficits and surpluses per unit area in excess of a few 100 mm are present at scales of a few 100 km2. Fluid fluxes associated with oil and gas activities since 1950 likely exceed background groundwater fluxes in these areas. Modeled pressures capable of creating upward hydraulic gradients are predicted for the Midale Member and Mannville Group, two of the strata with the highest amounts of injection in the study area. This could lead to upward leakage of fluids if permeable pathways, such as leaky wells, are present. © 2021 National Ground Water Association.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rights© 2021 National Ground Water Association.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.titleChanges in Deep Groundwater Flow Patterns Related to Oil and Gas Activitiesen_US
dc.typeArticleen_US
dc.identifier.eissn1745-6584
dc.contributor.departmentHydrology and Atmospheric Sciences, University of Arizonaen_US
dc.identifier.journalGroundwateren_US
dc.description.note12 month embargo; first published: 13 September 2021en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.pii10.1111/gwat.13136
dc.source.journaltitleGroundwater


Files in this item

Thumbnail
Name:
Jellicoe et al Sept 7 accepted.pdf
Embargo:
2022-09-13
Size:
2.629Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record