We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Characterization of the log lithology of cores LB-07A and LB-08A of the Bosumtwi impact structure by using the anisotropy of magnetic susceptibility
Citation
Schell, C., Schleifer, N., & Elbra, T. (2007). Characterization of the log lithology of cores LB‐07A and LB‐08A of the Bosumtwi impact structure by using the anisotropy of magnetic susceptibility. Meteoritics & Planetary Science, 42(4‐5), 839-847.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
Petrophysical data are commonly used for the discrimination of different lithologies, as the variation in mineralogy, texture, and porosity is accompanied by varying physical properties. A special field of investigation is the analysis of the directional dependence (anisotropy) of the petrophysical properties, which can provide further information on the characteristics of the lithologies, due to the fact that this parameter is different in the various rock-forming and rockchanging processes, e.g., deformation or sedimentation. To characterize the rocks in drill cores LB-07A and LB-08A, which were drilled into the deep crater moat and central uplift of the Bosumtwi impact structure, Ghana, samples were taken for the study of petrophysical properties. In the present work the magnetic properties of these samples were determined in the laboratory. The results are discussed in relation to the various lithologies represented by this sample suite. The shape and degree of magnetic anisotropy, in combination with the magnetic susceptibility, proved useful in distinguishing between the different lithologies present in the drill cores (polymict lithic breccia, suevite, shale component, and meta-graywacke). It was possible to correlate layers of high (shale component), ntermediate (graywacke, polymict lithic breccia), and low (suevite) anisotropy degree with the lithostratigraphic sequences determined for cores LB-07A and LB-08A. The shape of the anisotropy showed that foliation is most dominant within the shale component, whereas lineation is more pronounced in the meta-graywacke and polymict lithic breccia. An overall increase of the anisotropy degree was observed from core LB-07A towards core LB-08A. Thus magnetic anisotropy data provide a useful contribution towards an improved petrophysical characterization of the lithostratigraphic sequences in drillcores from the Bosumtwi impact structure.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2007.tb01079.x