Partial melting of H6 ordinary chondrite Kernouve: Constraints on the effects of reducing conditions on oxidized compositions
dc.contributor.author | Ford, Rena L. | |
dc.contributor.author | Benedix, Gretchen K. | |
dc.contributor.author | McCoy, Timothy J. | |
dc.contributor.author | Rushmer, Tracy | |
dc.date.accessioned | 2021-02-12T22:31:04Z | |
dc.date.available | 2021-02-12T22:31:04Z | |
dc.date.issued | 2008-01-01 | |
dc.identifier.citation | Ford, R. L., Benedix, G. K., McCoy, T. J., & Rushmer, T. (2008). Partial melting of H6 ordinary chondrite Kernouvé: constraints on the effects of reducing conditions on oxidized compositions. Meteoritics & Planetary Science, 43(8), 1399-1414. | |
dc.identifier.issn | 1945-5100 | |
dc.identifier.doi | 10.1111/j.1945-5100.2008.tb00705.x | |
dc.identifier.uri | http://hdl.handle.net/10150/656468 | |
dc.description.abstract | Partial melting experiments at temperatures of 950-1300 degrees C were conducted on the H6 chondrite Kernouv under reducing conditions using CO-CO2 gas mixing and graphite-buffered sealed silica tubes to examine the effect of reducing conditions during melting of starting materials that are more oxidized relative to the oxygen fugacity conditions of the experiments. The experiments produced a range of mineralogical and compositional changes. Olivine exhibits significant reduction to compositions of Fa25 at temperatures of 1300 degrees C. In contrast, orthopyroxene exhibits only slight reduction until the highest temperatures. Chromite is sometimes consumed by intruding sulfides, and displays increasingly magnesian compositions ranging as low as Fe/Fe + Mg of 0.1 at a constant Cr/Cr + Al ratio. The compositional changes with increasing temperature reflect a complex set of reactions, including oxidation-reduction. One application of these experiments address whether primitive achondrites could have formed from ordinary chondrite-like precursors by partial melting under reducing conditions. While changes observed in olivine and troilite compositions might support such an idea, differences in oxygen isotopic composition, Cr/Cr + Al in chromite, orthopyroxene compositions, and thermodynamic evidence against reduction during melting of primitive achondrites (Benedix et al. 2005) firmly refute such an idea. | |
dc.language.iso | en | |
dc.publisher | The Meteoritical Society | |
dc.relation.url | https://meteoritical.org/ | |
dc.rights | Copyright © The Meteoritical Society | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Partial melting | |
dc.subject | H ordinary chondrite meteorites | |
dc.subject | winonaite meteorite | |
dc.subject | oxygen fugacity | |
dc.title | Partial melting of H6 ordinary chondrite Kernouve: Constraints on the effects of reducing conditions on oxidized compositions | |
dc.type | Article | |
dc.type | text | |
dc.identifier.journal | Meteoritics & Planetary Science | |
dc.description.collectioninformation | The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information. | |
dc.eprint.version | Final published version | |
dc.description.admin-note | Migrated from OJS platform February 2021 | |
dc.source.volume | 43 | |
dc.source.issue | 8 | |
dc.source.beginpage | 1399 | |
dc.source.endpage | 1414 | |
refterms.dateFOA | 2021-02-12T22:31:04Z |