A study of Mg and K isotopes in Allende CAIs: Implications to the time scale for the multiple heating processes
Citation
Ito, M., Nagasawa, H., & Yurimoto, H. (2006). A study of Mg and K isotopes in Allende CAIs: Implications to the time scale for the multiple heating processes. Meteoritics & Planetary Science, 41(12), 1871-1881.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
The measurements of magnesium and potassium isotopic compositions of refractory minerals in Allende calcium-aluminum-rich inclusions (CAIs), 7R-19-1, HN3-1, and EGG3 were taken by secondary ion mass spectrometry (SIMS). The 7R-19-1 contains 16O-rich and 16O-poor melilite grains and define a single isochron corresponding to an initial 26Al/27Al ratio of (6.6 +/- 1.3) x 10^(-5). The Al-Mg isochron, O isotope measurements and petrography of melilite in 7R-19-1 indicate that 16O-poor melilite crystallized within 0.4 Myr after crystallization of 16O-rich melilite, suggesting that oxygen isotopic composition of the CAI-forming region changed from 16O-rich to 16O-poor within this time interval. The 16O-poor melilite is highly depleted in K compared to the adjacent 16Orich melilite, indicating evaporation during remelting of 7R-19-1. We determined the isochron for 41Ca-41K isotopic systematics in EGG3 pyroxene with (4.1 +/- 2.0) x 10^(-9) (2-sigma) as an initial ratio of 41Ca/40Ca, which is at least two times smaller than the previous result (Sahijipal et al. 2000). The ratio of 41Ca/40Ca in the EGG3 pyroxene grain agrees within error with the value obtained by Hutcheon et al. (1984). No evidence for the presence of 41K excess (decay product of a short-lived radionuclide 41Ca) was found in 7R-19-1 and HN3-1. We infer that the CAI had at least an order of magnitude lower than canonical 41Ca/40Ca ratio at the time of the CAI formation.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2006.tb00457.x