• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 41 (2006)
    • Meteoritics & Planetary Science, Volume 41, Number 11 (2006)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 41 (2006)
    • Meteoritics & Planetary Science, Volume 41, Number 11 (2006)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Petrology of silicate inclusions in the Sombrerete ungrouped iron meteorite: Implications for the origins of IIE-type silicate-bearing irons

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15360-17713-1-PB.pdf
    Size:
    16.45Mb
    Format:
    PDF
    Download
    Author
    Ruzicka, A.
    Hutson, M.
    Floss, C.
    Issue Date
    2006-01-01
    Keywords
    iron IVA meteorites
    Differentiation
    asteroids
    pyroxenes
    asteroid disruption
    
    Metadata
    Show full item record
    Citation
    Ruzicka, A., Hutson, M., & Floss, C. (2006). Petrology of silicate inclusions in the Sombrerete ungrouped iron meteorite: Implications for the origins of IIE‐type silicate‐bearing irons. Meteoritics & Planetary Science, 41(11), 1797-1831.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656215
    DOI
    10.1111/j.1945-5100.2006.tb00452.x
    Additional Links
    https://meteoritical.org/
    Abstract
    The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate-rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (~69 vol% of inclusions on average), aluminous orthopyroxene (~9%, Wo1-4Fs2535, up to ~3 wt% Al), plagioclase (~8%, mainly An7092), Cl-apatite (~7%), chromite (~4%), yagiite (~1%), phosphaterich segregations (~1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate-melt-gas partitioning under transient, reducing conditions at high temperatures. Phosphate-rich segregations and different alkalic glasses (K-rich and Na-rich) formed by two types of liquid immiscibility. Yagiite, a K-Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late-stage crystallization product, possibly aided by Na-K liquid unmixing. Trace-element phase compositions reflect fractional crystallization of a single liquid composition that originated by low-degree (~48%) equilibrium partial melting of a chondritic precursor. Compositional differences between inclusions appear to have originated as a result of a filter-press differentiation process, in which liquidus crystals of Cl-apatite and orthopyroxene were less able than silicate melt to flow through the metallic host between inclusions. This process enabled a phosphoran basaltic andesite precursor liquid to differentiate within the metallic host, yielding a dacite composition for some inclusions. Solidification was relatively rapid, but not so fast as to prevent flow and immiscibility phenomena. Sombrerete originated near a cooling surface in the parent body during rapid, probably impact-induced, mixing of metallic and silicate liquids. We suggest that Sombrerete formed when a planetesimal undergoing endogenic differentiation was collisionally disrupted, possibly in a breakup and reassembly event. Simultaneous endogenic heating and impact processes may have widely affected silicate-bearing irons and other solar system matter.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2006.tb00452.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 41, Number 11 (2006)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.