• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 11 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 11 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluating planetesimal bow shocks as sites for chondrule formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15046-17382-1-PB.pdf
    Size:
    781.0Kb
    Format:
    PDF
    Download
    Author
    Ciesla, Fred J.
    Hood, Lon L. cc
    Weidenschilling, Stuart J.
    Issue Date
    2004-01-01
    Keywords
    shock waves
    chondrule formations
    solar nebula
    chondrules
    
    Metadata
    Show full item record
    Citation
    Ciesla, F. J., Hood, L. L., & Weidenschilling, S. J. (2004). Evaluating planetisimal bow shocks as sites for chondrule formation. Meteoritcs & Planetary Science, 39(11), 1809-1821.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655923
    DOI
    10.1111/j.1945-5100.2004.tb00077.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We investigate the possible formation of chondrules by planetesimal bow shocks. The formation of such shocks is modeled using a piecewise parabolic method (PPM) code under a variety of conditions. The results of this modeling are used as a guide to study chondrule formation in a one-dimensional, finite shock wave. This model considers a mixture of chondrule-sized particles and micron-sized dust and models the kinetic vaporization of the solids. We found that only planetesimals with a radius of ~1000 km and moving at least ~8 km/s with respect to the nebular gas can generate shocks that would allow chondrule-sized particles to have peak temperatures and cooling rates that are generally consistent with what has been inferred for chondrules. Planetesimals with smaller radii tend to produce lower peak temperatures and cooling rates that are too high. However, the peak temperatures of chondrules are only matched for low values of chondrule wavelength-averaged emissivity. Very slow cooling (<~100s of K/hr) can only be achieved if the nebular opacity is low, which may result after a significant amount of material has been accreted into objects that are chondrule-sized or larger, or if chondrules formed in regions of the nebula with small dust concentrations. Large shock waves of approximately the same scale as those formed by gravitational instabilities or tidal interactions between the nebula and a young Jupiter do not require this to match the inferred thermal histories of chondrules.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00077.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 11 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.