• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 5 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 5 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    40Ar-39Ar studies of whole rock nakhlites: Evidence for the timing of formation and aqueous alteration on Mars

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14957-17293-2-PB.pdf
    Size:
    916.8Kb
    Format:
    PDF
    Download
    Author
    Swindle, T. D.
    Olson, E. K.
    Issue Date
    2004-01-01
    Keywords
    40Ar-39Ar dating
    aqueous alteration
    Orvinio
    noble gases
    Mars meteorites
    
    Metadata
    Show full item record
    Citation
    Swindle, T. D., & Olson, E. K. (2004). 40Ar‐39Ar studies of whole rock nakhlites: Evidence for the timing of formation and aqueous alteration on Mars. Meteoritics & Planetary Science, 39(5), 755-766.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655838
    DOI
    10.1111/j.1945-5100.2004.tb00117.x
    Additional Links
    https://meteoritical.org/
    Abstract
    20-25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar-39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 +/- 10 for Lafayette, 1332 +/- 10 and 1323 +/- 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5-20% of the K-derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K-Ar system.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00117.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 5 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.