Citation
Bridges, J. C., Banks, D. A., Smith, M., & Grady, M. M. (2004). Halite and stable chlorine isotopes in the Zag H3–6 breccia. Meteoritics & Planetary Science, 39(5), 657-666.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
Zag is an H36 chondrite regolith breccia within which we have studied 14 halite grains less than or equal to 3 micrometers. The purity of the associated NaCl-H2O brine is implied by freezing characteristics of fluid inclusions in the halite and EPMA analyses together with a lack of other evaporite-like phases in the Zag H36 component. This is inconsistent with multi-stage evolution of the fluid involving scavenging of cations in the Zag region of the parent body. We suggest that the halite grains are clastic and did not crystallize in situ. Halite and water-soluble extracts from Zag have light Cl isotopic compositions, delta-37Cl = 1.4 to 2.8 ppm. Previously reported bulk carbonaceous chondrite values are approximately delta-37Cl = +3 to +4 ppm. This difference is too great to be the result of fractionation during evaporation, and instead, we suggest that Cl isotopes in chondrites are fractionated between a light reservoir associated with fluids and a heavier reservoir associated with higher temperature phases such as phosphates and silicates. Extraterrestrial carbon released at 600 degrees C from the H34 matrix has delta-13C = -20 ppm, consistent with poorly graphitized material being introduced into the matrix rather than indigenous carbonate derived from a brine. We have also examined 28 other H chondrite falls to ascertain how widespread halite or evaporite-like mineral assemblages are in ordinary chondrites.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2004.tb00109.x