We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Melting in the martian mantle: Shergottite formation and implications for present-day mantle convection on Mars
Citation
Kiefer, W. S. (2003). Melting in the Martian mantle: Shergottite formation and implications for present‐day mantle convection on Mars. Meteoritics & Planetary Science, 38(12), 1815-1832.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core-mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present-day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 x 10^(-12) W/kg, which corresponds to 39% of the Wänke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 x 10^(-12) W/kg can satisfy both the present-day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43-50% of the Wänke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core-mantle boundary temperature would require a larger amount of mantle radioactivity to permit present-day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 x 10^6, implying that mantle convection remains moderately vigorous on present-day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2003.tb00017.x