• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 12 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 12 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14891-17227-1-PB.pdf
    Size:
    1.960Mb
    Format:
    PDF
    Download
    Author
    Elkins-Tanton, L. T.
    Parmentier, E. M.
    Hess, P. C.
    Issue Date
    2003-01-01
    Keywords
    Fluid dynamics
    rotation
    Splash-form
    Tektites
    
    Metadata
    Show full item record
    Citation
    Elkins-Tanton, L. T., Parmentier, E. M., & Hess, P. C. (2003). Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics & Planetary Science, 38(12), 1753-1771.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655773
    DOI
    10.1111/j.1945-5100.2003.tb00013.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Crystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the core- mantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00013.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 12 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.