We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Detecting Channel Riparian Vegetation Response to Best-Management-Practices Implementation in Ephemeral Streams With the Use of Spot High-Resolution Visible Imagery
Issue Date
2013-01-01Keywords
channel morphologyConservation Effects Assessment Project (CEAP)
northern mixed-grass prairie
prairie cordgrass
remote sensing
Metadata
Show full item recordCitation
Vande Kamp, K., Rigge, M., Troelstrup, N. H., Smart, A. J., & Wylie, B. (2013). Detecting channel riparian vegetation response to best-management-practices implementation in ephemeral streams with the use of spot high-resolution visible imagery. Rangeland Ecology & Management, 66(1), 63-70.Publisher
Society for Range ManagementJournal
Rangeland Ecology & ManagementAdditional Links
https://rangelands.org/Abstract
Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n=103) subjectively into three classes; absent (estimated <5% cover; n=64), present (estimated 5-40% cover; n=23), and dense (estimated >40% cover; n=16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l’Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2 152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.Type
textArticle
Language
enISSN
0022-409Xae974a485f413a2113503eed53cd6c53
10.2111/REM-D-11-00153.1