Meteoritics & Planetary Science, Volume 38, Number 12 (2003)
ABOUT THIS COLLECTION
Meteoritics & Planetary Science is an international monthly journal of the Meteoritical Society—a scholarly organization promoting research and education in planetary science. Topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors and meteorites, asteroids, comets, craters, and tektites.
Meteoritics & Planetary Science was first published in 1935 under the title Contributions of the Society for Research on Meteorites. In 1947, the publication became known as Contributions of the Meteoritical Society and continued through 1951. From 1953 to 1995, the publication was known as Meteoritics, and in 1996, the journal's name was changed to Meteoritics & Planetary Science or MAPS. The journal was not published in 1952 and from 1957 to 1964.
This archive provides access to Meteoritics & Planetary Science Volumes 37-44 (2002-2009).
Visit Wiley Online Library for new and retrospective Meteoritics & Planetary Science content (1935-present).ISSN: 1086-9379
QUESTIONS?
Contact the University Libraries Journal Team with questions.
Recent Submissions
-
Annual Author IndexThe Meteoritical Society, 2003-01-01
-
Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low- and high-Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and lherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2-pyroxene assemblage. If the high-phosphorus and low-oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in martian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26Al, and 36Cl with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80, 82Kr and 128, 131Xe) suggest that the QUE 94201 sample came from a depth 22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36Cl age of 0.29 +/- 0.05 Myr and a 10Be exposure age of 2.6 +/- 0.5 Myr in a 4-pi geometry, implying an ejection age of 2.9 +/- 0.5 Myr.
-
Mineralogy, microtexture, and composition of shock-induced melt pockets in the Los Angeles basaltic shergottiteAnalytical electron microscopy of shock features in the basaltic shergottite Los Angeles (stone 1) reveals: 1) shock recorded in the bulk sample; and 2) localized pressure and temperature excursions that have generated melt pockets up to 4 mm in diameter. Bulk shock effects include microfaulting (offsets 1-200 m), mosaicism, deformed exsolution lamellae and planar fracturing in pyroxene, undulose extinction in whitlockite, mechanical twinning in titanomagnetite and ilmenite, and the transformation of plagioclase to maskelynite (less than or equal to 4% remnant reduced birefringence). The pressure estimates for bulk shock are 35-40 GPa. Localized shock excursions have generated three types of discrete melt zones (0.07 x 1.3 mm to 3.0 x 3.5 mm apparent diameter) possessing glassy to microcrystalline groundmasses. These melt pockets are differentiated on the basis of size, clast volume, and degree of crystallization and vesiculation. Melt veins and melt dikelets emanate from the melt pockets up to 3 mm into the host rock but do not necessarily connect with other melt pockets. The melt pockets were generated by pressure-temperature excursions of 60-80 GPa and 1600-2000 degrees C, resulting in discrete melting of adjacent host rock minerals at grain boundary margins. Concentric zoning in the margins of clinopyroxenes coincides with a progressive reduction in birefringence as melt pockets are approached. This suggests that the shock excursions were focused as point sources in the wake of the shock front that induced bulk damage.
-
Annual Subject IndexThe Meteoritical Society, 2003-01-01
-
Chemical compositions of martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation on MarsBulk chemical compositions of the shergottite basalts provide important constraints on magma genesis and mantle processes in Mars. Abundances of many major and trace elements in the shergottites covary in 2 distinct groups: Group 1 (G1) includes mostly highly incompatible elements (e.g., La, Th), and Group 2 (G2) includes mostly moderately incompatible elements (e.g., Ti, Lu, Al, Hf). Covariations of G2 elements (not necessarily linear) are consistent with partitioning between basalt magma and orthopyroxene + olivine. This fractionation represents partial melting to form the shergottites and their crystallization; the restite minerals cannot include aluminous phase(s), phosphate, ilmenite, zircon, or sulfides. Overall, abundances of G1 elements are decoupled from those of G2. In graphing abundances of a G1 element against those of a G2 element, G1/G2 abundance ratios do not appear to be random but are restricted to 4 values. Shergottites with a given G1/G2 value need not have the same crystallization age and need not fall on a single fractionation trajectory involving compatible elements (e.g., Ti versus Fe*). These observations imply that the G1/G2 families were established before basalt formation and suggest metasomatic enrichment of their source region (major carrier of G2 elements) by a component rich in G1 elements. Group 1 elements were efficiently separated from G2 elements very early in Mars' history. Such efficient fractionation is not consistent with simple petrogenesis; it requires multiple fractionations, "complex" petrogenetic processes, or minerals with unusual geochemistry. The behavior of phosphorus in this early fractionation event is inexplicable by normal petrogenetic processes and minerals. Several explanations are possible, including significant compatibility of P in majoritic garnet and the presence of P-bearing iron metal (or a phosphide phase) in the residual solid assemblage (carrier of G2 elements). If the latter, Mars' mantle is more oxidized now than during the ancient fractionation event.
-
The oxygen fugacity of olivine-phyric martian basalts and the components within the mantle and crust of MarsThe oxygen fugacity of olivine-phyric martian basalts is estimated using olivine-pyroxene- spinel equilibria, supported by detailed petrography. Results are plotted, along with previous oxygen fugacity estimates, against La/Yb, which is used as a proxy for long-term incompatible-element depletion or enrichment in martian basalt reservoirs. In general, the correlation between oxygen fugacity and La/Yb observed by Herd et al. (2002a) holds for the olivine-phyric basalts. The implications of the correlation are re-evaluated in light of work by Borg et al. (Forthcoming), which indicates that the variations in radiogenic isotopic composition can be modeled by mixing of mantle sources established by 4.5 Ga through crystallization of a magma ocean in lieu of assimilation of crustal material. The results demonstrate that the crust-like component, interpreted as trapped liquid in a magma ocean cumulate pile, must be oxidized to explain the oxygen fugacity of the martian basalts. Consequently, the pre-eruptive water contents of the more oxidized basalts are expected to be higher, although water is not called upon as the cause of the oxidation. Unmixing of mantle components provides an important context for the interpretation of oxygen isotopes, demonstrated here, and of samples returned from the martian surface.
-
Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottitesWe examine the occurrences, textures, and compositional patterns of spinels in the olivine- phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET-A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the lherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel-olivine-pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr-Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvospinel. Ulvospinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvospinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvospinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel-olivine-pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest-Cr#, lowest-fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low-Ca pyroxene. Assemblages representing the onset of ulvospinel crystallization consist of the lowest-Ti ulvospinel, the most magnesian olivine in which ulvospinel occurs as inclusions, and equilibrium low-Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (~QFM -3.8), to EET-A (QFM -2.8) and ALH A77005 (QFM -2.6), to NWA 1110 (QFM -1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET-A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non-buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.
-
Melting in the martian mantle: Shergottite formation and implications for present-day mantle convection on MarsRadiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core-mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present-day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 x 10^(-12) W/kg, which corresponds to 39% of the Wänke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 x 10^(-12) W/kg can satisfy both the present-day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43-50% of the Wänke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core-mantle boundary temperature would require a larger amount of mantle radioactivity to permit present-day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 x 10^6, implying that mantle convection remains moderately vigorous on present-day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.
-
Constraints on the structure of the martian interior determined from the chemical and isotopic systematics of SNC meteoritesThe crystallization ages of martian (SNC) meteorites give evidence that martian volcanism has continued until recent times--perhaps until the present. These meteorites also indicate that the mantle source regions of this volcanism are modestly to extremely depleted by terrestrial standards. These 2 observations produce a conundrum. How is it that such depleted source regions have produced basaltic magma for such a long time? This contribution attempts to quantify the radiogenic heat production in 2 distinct martian mantle source regions: those of the shergottites and nakhlites. Compared to the depleted upper mantle of the Earth (MORB), the nakhlite source region is depleted by about a factor of 2, and the shergottite source region is depleted by a factor of 6. According to current geophysical models, the nakhlite source contains the minimum amount of radioactive heat production to sustain whole-mantle convection and basalt generation over geologic time. A corollary of this conclusion is that the shergottite source contains much too little radioactivity to produce recent (<200 Ma) basalts. A model martian interior with a deep nakhlite mantle that is insulated by a shallow shergottite mantle may allow basalt production from both source regions if the divide between the nakhlite-shergottite mantles acts as a thermal boundary layer. Similarities between lunar and martian isotopic reservoirs indicate that the Moon and Mars may have experienced similar styles of differentiation.
-
Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for MarsCrystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the core- mantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.
-
A petrogenic model for the origin and compositional variation of the martian basaltic meteoritesThe major element, trace element, and isotopic compositional ranges of the martian basaltic meteorite source regions have been modeled assuming that planetary differentiation resulted from crystallization of a magma ocean. The models are based on low to high pressure phase relationships estimated from experimental runs and estimates of the composition of silicate Mars from the literature. These models attempt to constrain the mechanisms by which the martian meteorites obtained their superchondritic CaO/Al2O3 ratios and their source regions obtained their parent/daughter (87Rb/86Sr, 147Sm/144Nd, and 176Lu/177Hf) ratios calculated from the initial Sr, Nd, and Hf isotopic compositions of the meteorites. High pressure experiments suggest that majoritic garnet is the liquidus phase for Mars relevant compositions at or above 12 GPa. Early crystallization of this phase from a martian magma ocean yields a liquid characterized by an elevated CaO/Al2O3 ratio and a high Mg#. Olivine-pyroxene-garnet-dominated cumulates that crystallize subsequently will also be characterized by superchondritic CaO/Al2O3 ratios. Melting of these cumulates yields liquids with major element compositions that are similar to calculated parental melts of the martian meteorites. Furthermore, crystallization models demonstrate that some of these cumulates have parent/daughter ratios that are similar to those calculated for the most incompatible-element-depleted source region (i.e., that of the meteorite Queen Alexandra [QUE] 94201). The incompatible-element abundances of the most depleted (QUE 94201-like) source region have also been calculated and provide an estimate of the composition of depleted martian mantle. The incompatible-element pattern of depleted martian mantle calculated here is very similar to the pattern estimated for depleted Earth's mantle. Melting the depleted martian mantle composition reproduces the abundances of many incompatible elements in the parental melt of QUE 94201 (e.g., Ba, Th, K, P, Hf, Zr, and heavy rare earth elements) fairly well but does not reproduce the abundances of Rb, U, Ta and light rare earth elements. The source regions for meteorites such as Shergotty are successfully modeled as mixtures of depleted martian mantle and a late stage liquid trapped in the magma ocean cumulate pile. Melting of this hybrid source yields liquids with major element abundances and incompatible-element patterns that are very similar to the Shergotty bulk rock.
-
Ferric iron in SNC meteorites as determined by Mössbauer spectroscopy: Implications for martian landers and martian oxygen fugacityMössbauer spectra of martian meteorites are currently of great interest due to the Mössbauer spectrometers on the Athena mission MER rovers as well as the European Space Agency Mars Express mission, with its Beagle 2 payload. Also, considerable current effort is being made to understand the oxygen fugacity of martian magmas because of the effect of fO2 on mineral chemistry and crystallization processes. For these 2 reasons, the present study was conceived to acquire room temperature Mössbauer spectra of mineral separates and whole rock samples of 10 SNC meteorites. The results suggest that mineral identification using remote application of this technique will be most useful when the phases present have distinctive parameters arising from Fe in very different coordination polyhedra; for example, pyroxene coexisting with olivine can be discriminated easily, but opx versus cpx cannot. The MER goal of using Mössbauer spectroscopy to quantify the relative amounts of individual mineral species present will be difficult to satisfy if silicates are present because the lack of constraints on wt% FeO contents of individual silicate phases present will make modal calculations impossible. The remote Mössbauer spectroscopy will be most advantageous if the rocks analyzed are predominantly oxides with known stoichiometries, though these phases are not present in the SNCs. As for the detection of martian oxygen fugacity, no evidence exists in the SNC samples studied of a relationship between Fe3+ content and fO2 as calculated by independent methods. Possibly, all of the Fe3+ observed in olivine is the result of dehydrogenation rather than oxidation, and this process may also be the source of all the Fe3+ observed in pyroxene. The observed Fe3+ in pyroxene also likely records an equilibrium between pyroxene and melt at such low fO2 that little or no Fe3+ would be expected.