Meteoritics & Planetary Science is an international monthly journal of the Meteoritical Society—a scholarly organization promoting research and education in planetary science. Topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors and meteorites, asteroids, comets, craters, and tektites.

Meteoritics & Planetary Science was first published in 1935 under the title Contributions of the Society for Research on Meteorites. In 1947, the publication became known as Contributions of the Meteoritical Society and continued through 1951. From 1953 to 1995, the publication was known as Meteoritics, and in 1996, the journal's name was changed to Meteoritics & Planetary Science or MAPS. The journal was not published in 1952 and from 1957 to 1964.

This archive provides access to Meteoritics & Planetary Science Volumes 37-44 (2002-2009).

Visit Wiley Online Library for new and retrospective Meteoritics & Planetary Science content (1935-present).

ISSN: 1086-9379


Contact the University Libraries Journal Team with questions.

Recent Submissions

  • Phase equilibrium investigations of the Adirondack class basalts from the Gusev plains, Gusev crater, Mars

    Monders, Anna G.; Médard, Etienne; Grove, Timothy L. (The Meteoritical Society, 2007-01-01)
    Phase equilibrium experiments have been performed on a synthetic analog of the Gusev plains basalt composition from the Spirit landing site on Mars. Near-liquidus phase relations were determined over the pressure range of 0.1 to 1.5 GPa and at temperatures from 1125 to 1390 degrees C in a piston cylinder apparatus and 1 atm gas mixing furnace. The composition is multiply saturated with olivine, orthopyroxene, and spinel near its liquidus at 1320 degrees C and 1.0 GPa, or 85 km depth on Mars, placing an upper limit constraint on the thickness of the Martian lithosphere at the time of eruption. Our experimental work suggests that the Gusev basalts are anhydrous batch melts of a primitive Martian mantle similar to the composition estimated by Dreibus and Wänke (1984). The temperature of multiple saturation indicates the persistence of high mantle potential temperatures on Mars, similar to those on the modern Earth, until at least the very latest Noachian (3.7 Ga). These high mantle temperatures would be responsible for persistent basaltic volcanism throughout the southern highlands during the first billion years of Mars's history. The source for Gusev basalts differs strongly from the source for shergottite meteorites, reinforcing the idea of the absence of global mantle convection and mixing on Mars. The existence of a relatively primitive mantle reservoir requires that at least part of the mantle underwent little modification during early planetary differentiation.
  • George West Wetherill (1925-2006)

    Wasson, John (The Meteoritical Society, 2007-01-01)
  • Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites

    Botta, Oliver; Martins, Zita; Ehrenfreund, Pascale (The Meteoritical Society, 2007-01-01)
    CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and Beta-alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography-fluorescence detection (HPLC-FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM- and CI-type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.
  • Localized shock melting in lherzolitic shergottite Northwest Africa 1950: Comparison with Allan Hills 77005

    Walton, E. L.; Herd, C. D. K. (The Meteoritical Society, 2007-01-01)
    The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low-Ca pyroxene poikilically enclosing cumulate olivine (Fo70-75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low- and high-Ca pyroxene, cumulate olivine (Fo68-71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large-scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35-45 GPa. Large (millimeter-size) melt pockets have crystallized magnesian olivine (Fo78-87) and chromite, embedded in an Fe-rich, Al-poor basaltic to picro-basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 degrees C/micrometer) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 x 10^3 crystals/mm^2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 x 10^5 crystals/mm^2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45-55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.
  • Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater

    Abramov, Oleg; Kring, David A. (The Meteoritical Society, 2007-01-01)
    Large impact events like the one that formed the Chicxulub crater deliver significant amounts of heat that subsequently drive hydrothermal activity. We report on numerical modeling of Chicxulub crater cooling with and without the presence of water. The model inputs are constrained by data from borehole samples and seismic, magnetic, and gravity surveys. Model results indicate that initial hydrothermal activity was concentrated beneath the annular trough as well as in the permeable breccias overlying the melt. As the system evolved, the melt gradually cooled and became permeable, shifting the bulk of the hydrothermal activity to the center of the crater. The temperatures and fluxes of fluid and vapor derived from the model are consistent with alteration patterns observed in the available borehole samples. The lifetime of the hydrothermal system ranges from 1.5 to 2.3 Myr depending on assumed permeability. The long lifetimes are due to conduction being the dominant mechanism of heat transport in most of the crater, and significant amounts of heat being delivered to the near-surface by hydrothermal upwellings. The long duration of the hydrothermal system at Chicxulub should have provided ample time for colonization by thermophiles and/or hyperthermophiles. Because habitable conditions should have persisted for longer time in the central regions of the crater than on the periphery, a search for prospective biomarkers is most likely to be fruitful in samples from that region.
  • L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating

    Korochantseva, Ekaterina V.; Trieloff, Mario; Lorenz, Cyrill A.; Buykin, Alexey I.; Ivanova, Marina A.; Schwarz, Winfried H.; Hopp, Jens; Jessberger, Elmar K. (The Meteoritical Society, 2007-01-01)
    Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L-chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 +/- 30 Myr and 520 +/- 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar-39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 +/- 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 +/- 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L-chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.
  • The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions

    Yabuta, Hikaru; Williams, Lynda B.; Cody, George D.; Alexander, Conel M. O'D.; Pizzarello, Sandra (The Meteoritical Society, 2007-01-01)
    We report on the molecular analyses of the water- and solvent-soluble organic compounds released from the insoluble organic material (IOM) of the Murray meteorite upon treatment with weight-equivalent amounts of water and under conditions of elevated temperature and pressure. A varied suite of compounds was identified by gas chromatography-mass spectrometry (GC-MS). C3-C17 alkyl dicarboxylic acids and N- and O-containing hydroaromatic and aromatic compounds were found in the water extracts. The solvent extracts contained N-, O-, and S-containing aromatic compounds, a large number of their isomers and homologs, and a series of polycyclic aromatic hydrocarbons (PAHs) of up to five rings, together with noncondensed aromatic species such as substituted benzenes, biphenyl, and terphenyls as well as their substituted homologs, and hydrated PAHs. Isotopic analyses showed that residue IOMs after hydrothermal treatment had lower deuterium and 15N content than the untreated material (Delta-D = -833 ppm and Delta-15N = -24.1) but did not differ from it in 13C composition. The effect of the hydrothermolytic release was recorded in significant differences between the NMR spectra of untreated and residue IOM. A possible relation to common precursors for the dicarboxylic acids found in the IOM and bulk extracts is discussed.
  • Hydrothermal alteration experiments of enstatite: Implications for aqueous alteration of carbonaceous chondrites

    Ohnishi, Ichiro; Tomeoka, Kazushige (The Meteoritical Society, 2007-01-01)
    Enstatite is one of the major constituent minerals in carbonaceous chondrites. Hydrothermal alteration experiments (26 in total) of enstatite were carried out at pH 0, 6, 7, 12, 13, and 14, at temperatures of 100, 200, and 300 degrees C, and for run durations of 24, 72, 168, and 336 h in order to provide constraints on the aqueous-alteration conditions of the meteorites. The recovered samples were studied in detail by using powder X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).Under acidic and mildly acidic conditions (pH 0, 6), no significant alteration occurred, whereas under neutral to alkaline conditions (pH 7-14), serpentine and saponite formed in various proportions by replacing enstatite. At 300 degrees C for 168 h, serpentine formed under neutral to moderately alkaline conditions (pH 7, 12), and serpentine and saponite formed as unit cell-scale coherent intergrowths under highly alkaline conditions (pH 13, 14). The amounts of phyllosilicates have a tendency to increase with increasing pH, temperature, and run duration. There is also a tendency for saponite to form at higher pH and temperature and under longer run-durations than serpentine.The results indicate that alteration of enstatite is strongly dependent on the experimental conditions, especially pH. They suggest that CM chondrites experienced aqueous alteration under neutral to alkaline conditions, whereas CV and CI chondrites experienced aqueous alteration under more alkaline conditions. The results also suggest that aqueous alteration in CI chondrites occurred at higher temperatures than in CM chondrites, and aqueous alteration in CV chondrites occurred at even higher temperatures than in CI chondrites.
  • On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites

    Day, James M. D.; Taylor, Lawrence A. (The Meteoritical Society, 2007-01-01)
    Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) provide constraints on their crystallization and mineral growth histories. In conjunction with whole-rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow-level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.
  • Seismic analysis for the Lanzhou fireball

    Dailu, Rong; Yarong, Li (The Meteoritical Society, 2007-01-01)
    In this paper, we convert the Lanzhou fireball's trajectory using seismic data according to the analytical method presented in Pujol et al. (2005, 2006). Taking the same assumptions as Pujol et al., the position of the fireball burst at its terminal has been converted using a relative simple independent method. Both the trajectory and the position of burst are roughly coincident.
  • Heating effects of the matrix of experimentally shocked Murchison CM chondrite: Comparison with micrometeorites

    Tomioka, Naotaka; Tomeoka, Kazushige; Nakamura-Messenger, Keiko; Sekine, Toshimori (The Meteoritical Society, 2007-01-01)
    Micrometeorites have been significantly altered or melted by heating, which has been mainly ascribed to aerodynamic drag during atmospheric entry. However, if a major fraction of micrometeorites are produced by impacts on porous asteroids, they may have experienced shock heating before contact with the Earth's atmosphere (Tomeoka et al. 2003). A transmission electron microscope (TEM) study of the matrix of Murchison CM chondrite experimentally shocked at pressures of 10-49 GPa shows that its mineralogy and texture change dramatically, mainly due to shock heating, with the progressive shock pressures. Tochilinite is completely decomposed to an amorphous material at 10 GPa. Fe-Mg serpentine is partially decomposed and decreases in amount with increasing pressure from 10 to 30 GPa and is completely decomposed at 36 GPa. At 49 GPa, the matrix is extensively melted and consists mostly of aggregates of equigranular grains of Fe-rich olivine and less abundant low-Ca pyroxene embedded in Si-rich glass. The mineralogy and texture of the shocked samples are similar to those of some types of micrometeorites. In particular, the samples shocked at 10 and 21 GPa are similar to the phyllosilicate (serpentine)-rich micrometeorites, and the sample shocked at 49 GPa is similar to the olivine-rich micrometeorites. The shock heating effects also resemble the effects of pulse-heating experiments on the CI and CM chondrite matrices that were conducted to simulate atmospheric entry heating. We suggest that micrometeorites derived from porous asteroids are likely to go through both shock and atmospheric-entry heating processes.