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ABSTRACT 

Recent NASA satellite missions such as the Ice Cloud and Land Elevation Satellite version 2 

(ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI) have been deployed to survey 

the Earthôs surface with mission goals of monitoring changes in glacier ice, sea ice, and vegetation 

for ICESat-2 and retrieval of 3-D structure of mid-latitude and tropical canopies globally for GEDI. 

Both instruments have provided the community with unprecedented high-resolution active remote 

sensing measurements of variables relating to processes in the water cycle. These advancements 

in spaceborne lidar technology motivate the works performed in this dissertation that demonstrate 

the importance of using these instruments for the retrieval of hydrometeorological variables and 

provide motivation for future spaceborne lidar missions.  

Mitchell et al. (2025a) evaluated snow depths retrieved from ICESat-2 multiple lidar scattering 

measurements, a new and novel technique developed by Y. Hu et al. (2022) and Lu et al. (2022). 

Snow depths from ICESat-2 are compared to the in-situ measurement ï derived University of 

Arizona (UA) product for two distinct regions of the contiguous U.S. (CONUS): the Mountain 

West (complex terrain) and the Great Lakes (homogeneous terrain). Biases between the snow 

products are co-located with several terrestrial datasets (i.e., Moderate Resolution Imaging 

Spectroradiometer (MODIS), GEDI, ICESat-2, and USGS LANDFIRE) and then evaluated in 

terms of the time of snow season (December ï April) and snow density to understand the 

performance of the retrieval. The retrieval performance performed well overall, but results showed 

the performance decreased with increasingly complex terrain and in the presence of tall canopies. 

Additionally, the retrievalôs performance decreased later into the snow season and with higher 

snow densities. The findings provided insights into future corrections that can be made to the 

retrieval in future studies. 
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Mitchell et al. (2025b) co-located GEDI spaceborne lidar canopy measurements and snow depths 

from UA with MODIS LAI and land cover (LC) products over the CONUS for a two-year period 

(2019-2021) to address the questions of if the underestimation of the MODIS LAI data for 

evergreen forest are due to deficiencies related to the misclassification of the input LC data or the 

LAI retrieval itself? Comparisons between GEDI plant area index (PAI) and MODIS LAI 

highlighted the MODIS retrieval deficiencies in evergreen forests, where the median GEDI PAI 

and MODIS LAI winter/summer ratios are 0.87 and 0.29 respectively. The sensitivity of LAI to 

snow cover is highest in evergreen forests where LC analyses also demonstrate the highest 

potential for misclassified pixels according to the International Geosphere Biosphere-Programme 

LC classification using GEDI canopy metrics. Corrections to wintertime LAI using the 

winter/summer PAI ratios are applied to tall forest LC types and showed the greatest improvements 

over evergreen needleleaf forest. Finally, a decision tree approach leveraging several GEDI canopy 

metrics showed potential to reclassify the MODIS-misclassified LC pixels and demonstrate the 

advantage of leveraging active spaceborne lidar measurements to improve passive remote sensing 

data.  

Following Mitchell et al. (2025b), corrections are made to MODIS LAI prescribed to the 

Community Land Model version 5 (CLM5.0) for evergreen trees in the third study, to investigate 

the impact of using LAI datasets improved by spaceborne lidar measurements on land modeling. 

The findings show promising results in the improvement of the representation of LAI for evergreen 

throughout the year. In boreal evergreen forest, changes to the LAI substantially impacted 

snowpack, evaporation, and runoff by shifting the seasonal cycles by a month. For tropical 

evergreen forest, the largest changes were seen in wet season partitioning of evaporation, but 

overall changes were relatively small . These studies highlight the need for continued improvement 
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of the retrieval of hydrometeorological properties from spaceborne lidar and the importance of 

continuing future spaceborne lidar missions with new advancements in lidar technology.  
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CHAPTER 1. INTRODUCTION 

 

The field of hydrometeorology represents the intersection of hydrology and atmospheric sciences 

where the fundamental purpose of the field is to understand the Earthôs atmospheric and land 

processes and their interrelationships as it pertains to the water cycle. The motivation for 

hydrometeorology extends from the fact that meteorologists often are tasked with decision making 

related to hydrology and hydrologists are tasked with water resources challenges that are often 

related to hydroclimatology. Both fields rely on each other to provide the domain knowledge and 

data necessary to answer their hydrometeorological related science questions and fulfill their 

respective tasks at hand requiring collaboration with many different types of scientists (Peck, 

1978). Realizing the need to more efficiently fill this gap in knowledge, the role of 

hydrometeorologist fundamentally is to understand the energy and water fluxes globally. However, 

the true nature of this role is to link the atmosphere and hydrosphere in an effort to enhance our 

understanding of natural disasters such as floods, droughts, wildfires, along with assistance in 

water resources related issues in our society (Valipour et al., 2021).  

Through the assimilation of meteorological and hydrological measurements we gain the 

knowledge necessary to complete the link between hydrology and meteorology, to better predict 

natural hazards at the short-term scale such as floods and debris flows. The importance of these 

measurements goes beyond just short-term forecasting and hydrometeorological observations can 

be used in decision support services for operations for a variety of applications related but not 

limited to, water supply, planting and harvesting, wildlife preservation, and annual snowmelt 

preparations (Peck, 1978; Sene, 2010).  
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These observations are traditionally obtained from in-situ measurements where ground-based 

instruments provide high accuracy point measurements that can be used to assimilate into global 

dynamic forecasting models. However, the density of these point observations is relatively low 

compared to the area that they represent and while they are often considered the ground truth 

measurements, they will always be limited by their spatial coverage (Morel, 1981). This is 

especially true for precipitation measurements (either rain or snow) where the spatial variability 

can be high, leading to large potential errors in using limited point measurements to represent the 

area average. Remote sensing has been successful in providing extensive amounts of observations 

that do not require human intervention, reducing the need to rely solely on ground-based 

measurements for accurate representation in global models or data. Though ground-based 

measurements have their limitations when compared to remote sensing, we still need these in-situ 

measurements to calibrate and validate any remote sensing technologies we use to obtain 

hydrometeorological observations (Sene, 2010; Cauteruccio et al., 2021).  

The use of remote sensing in hydrometeorology has greatly improved measurements globally 

(Peck, 1978) and remote sensing technologies are used to retrieve hydrometeorological variables 

such as but not limited to precipitation, soil moisture, along with land surface variables related to 

vegetation such as leaf area index (LAI), normalized difference vegetation index (NDVI), and 

those related to snow such as snow depth (SD) and snow water equivalent (SWE) (Kustas et al., 

2003). These variables are important for describing the state of the earthôs surface and the 

hydrometeorological processes for applications such as forecasting (Sene, 2010) and hydrological 

modeling (Xu et al., 2014).  

Recent advancements in remote sensing from satellite missions such as the Global Precipitation 

Experiment (GPM), Soil Moisture Active-Passive (SMAP), and Gravity Recovery and Climate 
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Experiment (GRACE) and many more have provided numerous observations and have shifted the 

paradigm of the importance of remote sensing for observations and integration into components 

of earth system models. Our ability to understand many processes within the water cycle has 

increased significantly as many satellite missionsô goals are designed to observe and retrieve 

hydrometeorological processes and variables (Chen and Wang, 2018). This increase in the volume 

of data and capability to store and process these remote sensing data for research is one of the key 

motivations for the research performed in the studies described in this dissertation and serve as a 

continuation for future remote sensing missions.  

In the studies described here, we leverage the use of spaceborne lidar remote sensing to evaluate 

and improve, new techniques for obtaining hydrometeorological variables, passive datasets from 

the Moderate Resolution Imaging Spectroradiometer (MODIS), and investigate the sensitivity of 

implementing changes in land surface models based on lidar measurements. Spaceborne lidar 

measurements from NASA have been used dating back to the launch of Lidar In-Space Technology 

Experiment (LITE) in 1994 which then led to the development of the Global Laser Altimeter 

System (GLAS) which was launched onboard the Ice Cloud and Land Elevation Satellite (ICESat) 

in 2003 (McCormick, 2005). The ICESat mission was then followed by the launch of the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) observations mission in 2006 (Winker 

et al., 2010).  

In more recent years lidar missions such as the Ice Cloud and Land Elevation Satellite version 2 

(ICESat-2) (Markus et al., 2017) and Global Ecosystem Dynamics Investigation (GEDI) (Dubayah 

et al., 2020) have provided global measurements and monitoring, focusing on glaciers and sea ice 

in the case of ICESat-2 and vegetation metrics for GEDI, with both capable of retrieving canopy 

measurements. The advantage of using spaceborne lidar measurements versus passive 
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measurements from instruments such as LandSat and MODIS is that the former are capable of 

providing high horizontal resolution and more accurate measurements (Markus et al., 2017, 

Dubayah et al., 2020) of near surface hydrometeorological metrics such as SD (Y. Hu et al., 2022, 

Lu et al., 2022), plant area index (PAI), along with canopy height and cover (Dubayah et al., 2022). 

All these variables impact the water, energy and carbon fluxes in earth system models (Song et al., 

2021).  

The ICESat-2 and GEDI missions have motivated the work performed for this dissertation where 

I (1) evaluate and provide suggestions for improvements to a new and novel multiple lidar 

scattering snow depth retrieval developed by Hu et al. (2022); (2) use canopy metrics derived from 

active spaceborne lidar GEDI to evaluate and suggest improvements for the MODIS LAI and land 

cover (LC) data products; (3) and finally assess the impact on adjusting LAI seasonal cycle in the 

Community Land Model (CLM) using spaceborne lidar measurements. The conclusions and 

contributions of this research can be used to motivate future spaceborne lidar missions to improve 

the retrieval of hydrometeorological variables from spaceborne lidar that can then be used to 

improve past and future datasets to further our understanding of these variables and for 

applications such as but not limited to forecasting, data analysis, and earth system modeling.     
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CHAPTER 2. PRESENT STUDY 

 

2.1. Evaluating Snow Depth Estimates from ICESat-2 Lidar Multiple Scattering 

Measurements 

This section describes the work done by Mitchell et al. (2025a) in evaluating snow depths from 

ICESat-2, which was submitted to the Journal of Hydrometeorology in April 2025. The manuscript 

and all supplementary materials can be found in Appendix A and are referred to throughout the 

summary of the work presented below. Figures and tables included in the manuscript are referred 

to using an A in front of the figure or table number, for example Figure A1 represents Figure 1 

from Mitchell et al. (2025a). Supplementary materials are presented similarly, for example Figure 

AS1 represents Figure S1 from the supplementary materials of Mitchell et al. (2025a).  

2.1.1) Introduction and Motivation  

Accurate measurements of snow depth (SD) and snow water equivalent (SWE) are important as 

they are crucial state variables in weather, hydrology, and climate sciences globally (Zeng et al., 

2018). The ability to capture in-situ SD and SWE measurements are limited around the globe. For 

example, in the Contiguous United States (CONUS), in-situ snow depth measurements are 

available from sources such as the National Resources Conservation Service (NRCS) SNOTEL 

network (Serreze et al., 1999) and the National Weather Service (NWS) and the NWSôs 

Cooperative Observer (COOP) network, however these point measurements are sparse. 

Additionally, the in-situ instruments need to be either maintained or are subject to human error. 

Remote sensing has been able to overcome these issues using measurements from instruments 

such as spaceborne microwave, but these products can be too coarse in resolution (on the order of 

10ôs of km) for smaller scale applications (Kelly, 2009; Takala et al., 2011).  
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The ICESat-2 was launched on 15 September 2018 with the Advanced Topographic Laser 

Altimeter System (ATLAS) instrument onboard the satellite and provides measurements of 

glaciers, ice caps, canopies, and terrain, along with many other variables worldwide derived from 

the 532 nm (green) ATLAS laser. The laserôs10 kHz frequency rate provided these data at a very 

high resolution along the ground with resolution of ~0.7 m with an average footprint size of ~11 

m (Markus et al., 2017), making the lidar a viable option for deriving high-resolution snow depth 

measurements. Several past studies leverage ICESat-2ôs advanced technology to derive snow 

depth through combination of snow-on, snow-off measurements (Shean et al., 2021; Enderlin et 

al., 2022; X. Hu et al., 2022, Neuenschwander et al., 2023; Deschamps-Berger et al., 2023; Besso 

et al., 2024),  lidar and radar measurements (Kacimi and Kwok, 2020; Kwok et al., 2020), or 

through the use of high resolution DEM models (Treichler and Kªªb, 2017; Liu et al., 2020). 

However, the uncertainty and biases can be large when using multiple instruments to derive snow 

depth and this serves as a primary motivation for developing the ICESat-2 snow depth product, 

which is a standalone retrieval (Y. Hu et al., 2022).  

The development and implementation of the ICESat-2 retrieval were performed in parts I (Y. Hu 

et al., 2022) and II (Lu et al., 2022) where overall results demonstrated it was a reliable technique 

for global application. However, those results were focused on the Arctic, and individual mid-

latitude flights demonstrate large differences between the University of Arizona (UA) snow depth 

product and the ICESat-2 snow depths (Figure 1). These findings motivate the first study in this 

dissertation (Mitchell et al., 2025a) where the impacts of topography, vegetation, seasonality, land 

cover, and density of the snowpack on the ICESat-2 snow depth retrieval were explored and its 

performance evaluated under various terrestrial land conditions. 
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Figure 1. 27 March 2020 ICESat-2 Flyover. Left panel shows ICESat-2 flight path (blue) with 

USGS LANDFIRE Elevation shown with values corresponding to the colorbar in the bottom right 

corner of the panel. Right panel shows the co-located UA snow depth (red) and ICESat-2 snow 

depths from methods 1 (blue), 2 (yellow), and 3 (green) along the ground track.  

 

2.1.2) Methodology  

Mitchell et al. (2025a) evaluated the three ICESat-2 snow depth methods derived from Y. Hu et al. 

(2022) by comparing ICESat-2 snow depths to the daily in-situ measurement derived 4-km UA 

snow depth and SWE product (Broxton et al., 2016; Dawson et al., 2017; Zeng et al., 2018; 

Broxton et al., 2019). Snow depths from ICESat-2 multiple lidar scattering measurements are 

derived using the following three methods: 

ὒ  ςὌ                            (1) 

ὒ   Ὧ Ὄ                            (2) 

ὒ   Ὧ Ὄ                           (3)  

Where the 1st -, 2nd ï and 3rd-order moments of the backscattering path length distribution (L) is 

proportional to the snow depth (H), and ksd represent the diffuse scattering coefficient. Monte Carlo 
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radiative transfer simulations are used to fit a theoretical path of an ICESat-2 lidar photon through 

a snowpack medium. As an example, for equation 1, ICESat-2 measurements can be used to 

estimate the snow backscatter profile (S) shown in Fig. 2, and the average path length <L> can 

then be obtained as the ratio of two integrals: ᷿ὅ ὸzὛ ὨὸȾ᷿ ὛὨὸ in which C is the speed of light, 

and t is the time laser light stayed inside snow.  

 

Figure 2. Example of a single ICESat-2 snow depth profile.  

A full derivation and theory of the retrieval can be found in Y. Hu et al. (2022). Figure 2 and 

Mitchell et al. (2025a) demonstrate that the three methods are very consistent with each other and 

perform similarly (Table AS2) and all conclusions from the evaluation of method 1 shown in this 

study can be expanded onto methods 2 and 3.   
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Snow depths from ICESat-2 are evaluated for two snow seasons for two regions (Mountain West 

and Great Lakes) in the CONUS region from 2019-2021 where the snow season is defined as 

December-April. Terrestrial land variables are co-located with the ICESat-2 snow depth biases 

(defined as ICESat-2 snow depth ï UA snow depth) from the MODIS IGBP LC (Loveland and 

Belward, 1997; Friedl and Sulla-Menashe, 2022), NDVI (Didan 2021), and LAI (Meyeni et al., 

2015) datasets, terrain metrics from USGS LANDFIRE (LANDFIRE, 2020a; LANDFIRE 2020b), 

along with canopy metrics from GEDI (Dubayah et al., 2021) and ICESat-2 (Neuenschwander et 

al., 2023). A full table of all the variables used in Mitchell et al. (2025a) can be found in Table A1. 

Additionally, they use time of snow season defined by early (Dec 1 - Jan 20), middle (Jan 21 ï 

Mar 11), late (Mar 12 ï Apr 30) and snow density (SWE divided by snow depth) to further partition 

their results where the snow density categories are based on the lowest third, middle third and 

highest third of the snow densities co-located with ICESat-2 snow depths in their study.  UA snow 

depths are at 4-km resolution across the CONUS and all variables from Table AI are coarsened 

through areal averaging using a nearest neighborsô approach to create pixel values that match the 

spatial resolution of the UA snow depth grid.  

2.1.3) Summary of Results and Conclusions  

ICESat-2 snow depths show both negative and positive biases across both regions when compared 

to the UA snow depths with more negative biases found in the Mountain West and neutral found 

in the Great Lakes region (Figure A1). The retrieval performed overall well considering the spatial 

coverage, with mean and median biases of -0.10 m and -0.04 m respectively. However, when 

considering the time of snow season and snow density, the magnitude of the bias is highest in late 

season and high snow density scenarios where mean absolute error (MAE) values are 0.23 m and 

0.38 m, respectively. Additionally, the biases tend to become more negative with increasing snow 
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density and time into the snow season, with median biases (IQR) of ~0 m (0.15 m and 0.14 m) in 

early season and low snow density scenarios, then in late season and high snow density scenarios 

the median biases (IQR) are -0.07 m (0.26 m) and -0.23 m (0.54 m), respectively (Table A2). 

These shifts in the biases throughout the snow season and with increasing snow density are clearly 

shown in Figures A2 and A3, respectively and demonstrate the ICESat-2 snow depth retrievalôs 

struggle in deeper and older aged snowpacks where snow stratigraphy and distribution of liquid 

water content (LWC) in the snowpack can become a factor given the scattering nature of the 

retrieval.  

Lu et al. (2022) suggested that the retrieval can also struggle in the presence of rough surfaces, 

complex terrain, and bottom layer effects, therefore Mitchell et al. (2025a) examined these effects 

by co-locating the biases against many terrestrial land variables (Table A1). The analysis used 

linear regressions between the ICESat-2 and UA snow depth bias to investigate the impact of these 

variables (using 50 bins from the 5th to 95th percentile as limits along the x-axis to reduce noise) 

for not only the entire period of study, but also under varying snow density and time of snow 

season scenarios (Table A3).  Terrain variable such as slope (R2 = 0.66), slope standard deviation 

(std) (R2 = 0.68) and elevation std (R2 = 0.72) and canopy metrics such as canopy top height from 

GEDI (R2 = 0.74), along with ICESat-2 top of canopy height std (R2 = 0.60), canopy cover fraction 

(R2 = 0.55), and MODIS Normalized Difference Vegetation Index (NDVI) (R2 = 0.60)  were found 

to have strong impacts on the retrievalôs performance where an increase in the magnitude of those 

variables led to an increase in the magnitude of the bias as well (Figure A4). The strength of these 

relationships generally increases further into the snow season and with increasing snow density. It 

also shows that canopy, vegetation health, and complexity of terrain not only impact the retrieval, 

but the impact is strongest when the retrieval performs the worst. For tall vegetation land cover 



ΞΤ 
 

types defined by the International Geosphere Biosphere Programme (IGBP) (canopy height > 2 

m; Table AS1), the impact shifts from positive to negative median and mean biases throughout the 

snow season (Figure A5).  

The findings of Table A3, Figure A4 and Figure AS2B suggest that GEDI canopy height and 

complex terrain (i.e., slope and slope std) have a strong impact on the retrieval performance and 

that increasing elevation comes with increasing complexity in the terrain. Therefore, a post-

processing bias correction is performed where the linear regressions of GEDI canopy height and 

slope are used to apply a correction to the ICESat-2 snow depths. However, while this correction 

did improve the mean and median biases overall from -0.10 m to -0.05 m and median bias from -

0.04 m to -0.00 m for GEDI canopy top height as an example, respectively, the distribution of the 

biases remain the same as the change in the interquartile range (IQR) was minimal demonstrating 

a translation of the bias and introduced more positive biases in areas where biases were more 

neutral (Figure 3 and Figure AS1). 
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Figure 3. Bias Correction for ICESat-2 Snow Depths. The 6-panel plot shows the ICESat-2 

snow depth bias from Mitchell et al., 2025a (A and B), the bias corrected using the linear regression 

from Figure A4 and the difference between the original for GEDI canopy top height (C and D) and 

slope (E and F). USGS LANDFIRE elevation is plotted in the background with colors 

corresponding to the colorbar in the bottom right corner of each panel. Snow depth biases are 

colored according to the colorbar to the right of each panel.  

 

The results of Table A2 show the ICESat-2 snow depth retrieval are good overall, and a simple 

post-processing bias correction may not be the appropriate solution for addressing the issues in 

late season and high snow density snowpacks identified by the Mitchell et al. (2025a). Therefore, 

future work should focus on the use of the insights gained to improve the retrieval in the pre-

processing stages where surface factors such as canopy and terrain can be accounted for. 

Furthermore, finer spatial and temporal scale analyses that account for environmental factors such 

as the diurnal temperature cycle, snowpack structure (i.e., stratigraphy) and evolution (i.e., 
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microstructure and metamorphism), and reduce the uncertainties of comparing high resolution 

lidar measurements to large scale gridded measurements could prove useful in making 

improvements to the ICESat-2 snow depth retrieval for global applications.  

2.2. Evaluating and Improving the Retrieval of MODIS Wintertime LAI Using Spaceborne 

LiDAR and Surface-Based Measurements 

This section describes the work done by Mitchell et al. (2025b) on evaluating the MODIS LAI and 

LC products, which was submitted to the Journal of Applied Meteorology and Climatology in May 

2025. The manuscript and all supplementary materials can be found in Appendix B, are referred 

to throughout the summary of the work presented below. Figures and tables included in the 

manuscript are referred to using a B in front of the figure or table number, for example Figure B1 

represents Figure 1 from Mitchell et al. (2025b). Supplementary materials are presented similarly, 

for example Figure BS1 represents Figure S1 from the supplementary materials of Mitchell et al. 

(2025b).  

2.2.1) Introduction and Motivation  

In the previous study, Mitchell et al., (2025a) focused on evaluation of the ICESat-2 snow depths 

over two distinct regions in the CONUS. Analysis included co-locating snow depth from ICESat-

2 and UA with MODIS products such as IGBP land cover and MODIS LAI. While it was shown 

that the retrieval struggle for some land cover types, particularly forested land cover types (Figure 

A5), further investigation for retrieval of ICESat-2 snow depths over evergreen needleleaf forest 

(ENF) show areas where 4-km ENF pixels are predominantly forested (Figure 3B), have presence 

of canopy cover (Figure 3D) and canopy height (Figure 3F and 3H), but show low to near zero 

LAI. Figure 4 demonstrates deficiencies in the MODIS LAI retrieval that agree with findings from 
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previous studies investigating wintertime MODIS LAI for evergreen vegetation (Tian et al., 2004, 

Yang et al., 2006, Heiskanen et al., 2012). 
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Figure 4. Wintertime MODIS LAI for Evergreen Needleleaf. The 8-panel figure shows 

scatterplots of MODIS LAI and snow depths from UA (A, C, E, and G) and ICESat-2 (B, D, F, H) 

for evergreen needleleaf forest at the 4-km resolution used in Mitchell et al. (2025a). The circle 

colors correspond to the MODIS land type forest cover fraction (A and B), ICESat-2 canopy cover 

(C and D) and height (E and F), and GEDI canopy top height (G and H) variables from Table 1 in 

Mitchell et al. (2025a) (Appendix A).  

 

LAI is an important component in Earth system models (ESMs) and directly affects carbon, water, 

and energy surface fluxes (Fang et al., 2019, Song et al., 2021). MODIS LAI data are widely used 

in Earth system models (Fang et al., 2019) including the Community Land Model version 5 

(CLM5.0) (Lawrence et al., 2019). Hence it is important to have the most accurate measurements 

of LAI. With recent advancements in remote sensing, spaceborne lidars such as GEDI which is a 

full waveform lidar launched on-board the International Space Station (ISS) provide high-

resolution canopy metrics (25 m footprints) of canopy cover, canopy height and plant area index 

(PAI) because of its ability to retrieve the 3-D canopy structure (Dubayah et al., 2020). While 

MODIS data have shown improvement with combination of high-resolution passive remote 

sensing (Anderson, 2012; Wu et al., 2012; Houborg et al., 2016), the use of spaceborne lidar allows 

for much more information to be obtained from the canopyôs structure and is an important 

advantage in the data used by Mitchell et al. (2025b).  

In the first study of this dissertation, Mitchell et al. (2025a) coarsened all variables to match the 4-

km UA snow depth and SWE grids, which introduced some uncertainties in the representation of 

data from the ICESat-2 and GEDI lidars. Additionally, there were less than 200 ENF samples. 

Therefore, given the small sample size, Figure 4 serves as motivation, and many more samples 

need to be analyzed to provide improvement in the robustness of the findings from Figure 4. Thus, 

the study performed by Mitchell et al. (2025b) used the native resolution of MODIS LAI and IGBP 

land cover (LC) data (500 m) in combination with GEDI canopy metrics and UA snow depths over 
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the entire CONUS to provide many more samples to answer whether the deficiencies of MODIS 

LAI are related to the MODIS LC data that serve as an input or the LAI retrieval itself?  

2.2.2) Methodology  

The MODIS LAI retrieval computes the LAI based on the inputs of land cover type and surface 

reflectance, the former which is used to determine the parameters from the biome look-up table 

that are then used in the radiative transfer model. Some land cover types from IGBP (i.e., mixed 

forest, closed shrublands, woody savannas, croplands, and cropland mosaics) cannot be directly 

translated to the biome types used in the retrieval and require more information from external 

sources to be disaggregated prior to the use of the radiative transfer model. Furthermore, 

misclassifications of LC can lead to errors in the LAI retrieval (Knyazikhin et al., 1999).  For this 

reason, Mitchell et al. (2025b) evaluated the LAI and LC type products, as deficiencies in the LC 

type (input) and LAI (output) data are not mutually exclusive.  

To evaluate the MODIS LAI and LC (Figure BS1) data products, two years (Dec 2019- Aug 2021) 

of winter (DFJ) and summer (JJA) time data are used over the CONUS where 25 m GEDI 

footprints are accumulated and areal averaged to 500 m resolution to produce single pixel values 

for each DJF and JJA period to match the MODIS grids (Figure BS2). The canopy height and 

cover metrics from GEDI are used to evaluate the MODIS LC data since the IGBP uses these 

metrics to define and differentiate between LC types (Table AS1). However, due to uncertainties 

in the GEDI canopy height data over shorter-statured vegetation and poorer performance when 

compared to ICESat-2 (Tang and Armston 2019; Zhu et al., 2023), Mitchell et al. (2025b) only 

considered tall vegetation types (IGBP LC types where canopy height > 2 m; Table B1) and 

evaluated the MODIS LC data using only the GEDI canopy cover data. Though, when considering 

the correction of misclassified pixels identified for tall forest LC types (ENF, EBF, MXF, and DBF) 
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we used a decision tree approach (Figure BS4) that accounts for the seasonality of the vegetation 

using PAI in addition to canopy height and canopy cover measurements from GEDI using the 

IGBP LC classification definitions.  

The GEDI PAI is compared directly to MODIS LAI during the winter and summer months to 

observe the seasonal cycle, where pixels needed to have valid GEDI PAI and MODIS LAI data 

during the winter and summer months to be considered, and land cover types with greater than 

1000 samples were analyzed (Deciduous Needleleaf was dropped from Table B1). Finally, when 

snowpack was considered, the UA snow depths were mapped back from 4 km to 500 m resolution 

to provide information on whether a pixel is snow-covered (SC) or non-snow-covered (NSC) in 

the wintertime, where a threshold of 4 cm is used to differentiate between the conditions. Mitchell 

et al. (2025b) used the 4-day MODIS LAI product and therefore a 4-day average UA snow depth 

is used to match the collection period used by the MODIS LAI retrieval (Knyazikhin et al., 1999).  

2.2.3) Summary of Results and Conclusions  

Evaluation of the MODIS LC data using GEDI canopy cover and the IGBP definitions of canopy 

cover (>60% for tall forest; 30-60% for Woody Savannas; >30% for Savannas) highlighted the 

potential for misclassified pixels with ENF, evergreen broadleaf (EBF), mixed forest (MXF), and 

savannas (SAV) showing more than 40% of pixels potentially misclassified (Figure B1A). Figure 

B1B shows the distribution of GEDI canopy cover for ENF and showed pixels with canopy cover 

< 30% signaling there may be misclassified pixels. To show sensitivity, the thresholds for SAV and 

tall forest (ENF, EBF, deciduous broadleaf (DBF), and MXF) are changed to 40% but still show 

~20% of pixels are misclassified (Figure 5 and Figure BS3).  
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Figure 5. Sensitivity of Misclassified IGBP Land Cover pixels based on GEDI Canopy 

Cover. The same as Figure 1A in Mitchell et al., 2025b (Figure B1A) except the threshold for 

tall forest and savannas has been changed to 0.4. 

 

The distributions of MODIS LAI and GEDI PAI for summer and winter showed large differences 

for ENF and EBF. The GEDI PAI distributions tend to be lower for all land cover types. This is an 

expected uncertainty with the areal averaging process. While the seasonal cycle for GEDI PAI and 

MODIS LAI products agrees for non-evergreen LCs, the analysis highlights the deficiencies 

MODIS LAI has during the wintertime for evergreen vegetation (Figure B2), especially evergreen 

needleleaf where estimation of the understory LAI can be difficult to estimate. The median winter-

to-summer ratio was used to quantify these differences where MODIS LAI and GEDI PAI differed 

the most in ENF with ratios of 0.29 and 0.87, respectively. All other land cover types were 

relatively consistent, however EBF ratios were lower than expected for both MODIS (0.63) and 

GEDI (0.68) products (Table B2).  

Snow has been hypothesized to impact the performance of the retrieval due to its impact on surface 

reflectance and ability to stay on the canopy during the winter months. Mitchell et al. (2025b) 

compared the wintertime LAI in SC and NSC conditions by taking the difference of the pixel 
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average during the two conditions. The presence of snow was insensitive for deciduous forest, but 

was more sensitive for evergreen forest, especially ENF where pixel LAI values between SC and 

NSC conditions can approach 3 m2/m2, further demonstrating the LAI retrievalôs struggles in 

wintertime. Furthermore, GEDI PAI measurements suggest that in both deciduous and evergreen 

forest the LAI may be underestimated during the wintertime (Figure B3). 

To correct MODIS LAI, Mitchell et al. (2025b) applied a post-processing correction to the 

wintertime LAI based on the GEDI PAI ratios in Table B2 for tall forests as WSAV and SAV pixels 

performed well and were consistent for both products. Pixels with a wintertime LAI (LAIwinter) 

value lower than the summertime LAI (LAIsummer) value multiplied by the ratio (c) were corrected 

to this value using the following piecewise function (equation 5):  

ὪὒὃὍ
ὧz ὒὃὍ ȟὭὪ  ὒὃὍ ὧz ὒὃὍ

ὒὃὍ ȟὭὪ  ὒὃὍ ὧz ὒὃὍ
           (5) 

This correction improved the seasonal cycle for MODIS LAI in the wintertime for evergreen 

vegetation, especially in ENF where the winter and summer distributions are more representative 

of evergreen vegetation throughout the year. An additional correction of using the 25th percentile 

of the GEDI PAI for each LC type was used but was insensitive for evergreen vegetation and makes 

the seasonal cycle for DBF worse (Figure B4). 

Though the PAI and LAI are compared directly, it is important to note that LAI is defined as one 

half of the total leaf area per unit ground surface. PAI in terms of leaves is defined the same as LAI 

but considers the stem, branches, and trunks in addition to the leaves, as the GEDI lidar system 

cannot differentiate between leaves and other woody organic materials. Furthermore, when 

comparing the method in which the products are derived, the GEDI PAI is calculated using a gap 

probability approach, which uses the canopy cover at multiple levels to derive a footprint PAI 
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(Tang and Armston 2019), versus the use of green vegetation reflectance for the MODIS LAI 

retrieval (Knyazikhin et al., 1999). In the case of the PAI and LAI, the PAI theoretically is higher, 

but it has been shown that in dense forest the misidentification of ground and canopy areas in the 

waveform profile, leading to overestimation of the ground return and therefore underestimation of 

the canopy returns and PAI (Liang et al., 2023). This weakness in the GEDI retrieval may help 

explain the generally lower PAI measurements than LAI measurements in Table B2.  Additionally, 

the differences in the resolution of the products (PAI ï 25 m; LAI ï 500 m) can add uncertainty 

when the GEDI data are areal-averaged to match the MODIS grids.  

Corrections were suggested for the MODIS LC data where the canopy height and cover metrics to 

were used to reclassify the pixels based on the IGBP classifications. The decision tree approach 

shown in Figure BS4 used all three GEDI canopy metrics to determine the tall vegetation type and 

then PAI values based on the findings in Table B2 determined whether a tall forest pixel was 

evergreen, mixed, or deciduous. Figure BS5 illustrated the distribution of original pixels and 

revealed that only 34%, 25%, and 15% of ENF, EBF, and MXF pixels were properly classified. 

DBF pixels were much greater at 58% and reinforce that the LAI retrieval struggles may not only 

be due to snow cover or wintertime conditions that affect the reflectance input data, but that the 

LC data may be misclassified, leading to large biases introduced when producing the LAI for a 

given pixel.  The measurements used from the GEDI spaceborne lidar demonstrate that there not 

only may be misclassified LC pixels affecting the retrieval, but that the LAI retrieval struggles 

over evergreen forest. The advancements in spaceborne lidar technology could prove useful in 

providing insights into the performance of the MODIS LAI data as Mitchell et al. (2025b) showed, 

and that these lidar measurements could be used to improve such products using data from current 

and future spaceborne lidar missions.   
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2.3. Impact on CLM Modeling of Adjusting LAI Seasonal Cycle using Spaceborne LiDAR 

Measurements 

2.3.1) Introduction  

Mitchell et al. (2025b) evaluated the MODIS LAI retrieval using GEDI PAI for a 2-year period 

(2019-2021) over the CONUS, where results using measurements from spaceborne lidar further 

demonstrate deficiencies when retrieving the MODIS LAI over evergreen forest during the 

wintertime months. Their study computed median winter to summer PAI and LAI ratios from 

GEDI and MODIS, respectively (Table B2). These ratios were used as a metric to evaluate the 

seasonality of passively retrieved MODIS LAI against active retrieved (and hence more accurate) 

PAI from GEDI, where wintertime MODIS LAI for ENF retrieved were found to have much lower 

values than summer with a median ratio of 0.29. This was much different than GEDI PAI where 

the median ratio for ENF was found to be 0.87, and the poor performance of MODIS LAI for ENF 

was consistent with other studies (Tian et al., 2004, Zeng et al., 2002, Yang et al., 2006, Heiskanen 

et al., 2012).  

Monthly LAI are prescribed to CLM5.0, which is the land model for the Community Earth System 

Model version 2 (CESM2) (Lawrence et al., 2018; Lawrence et al., 2019). These monthly LAI 

values are derived from the climatology of MODIS satellite data (Myneni et al., 2002; Lawrence 

and Chase 2007) and are subject to the weaknesses of high latitude retrievals for boreal forest and 

snow cover as suggested by Tian et al. (2004). Figure 6 highlights this weakness by showing the 

inconsistency in the seasonal cycle for the prescribed boreal ENF for CLM5.0, where LAI values 

should be relatively constant throughout the year but vary substantially with the lowest values in 

the northern hemisphere winter. The representation of LAI is an important component of earth 

system models as it directly influences the land modelôs surface water and energy fluxes (Song et 
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al., 2021). Motivated by the findings of Mitchell et al. 2025b, where they corrected wintertime 

MODIS LAI using a median winter to summer ratio (Figure B4), this study investigates the 

impacts of applying this correction to the CLM5.0 by prescribed LAI for evergreen forest using a 

similar approach to Zeng et al. (2002). We set a minimum value for each evergreen tree plant 

function type (PFT) (Table 1) based on spaceborne lidar measurements from instruments such as 

GEDI.  

PFT Plant Function Type Name  
Ratio 

Correction 

1 Temperate Evergreen Needleleaf 0.87 

2 Boreal Evergreen Needleleaf 0.87 

4 Tropical Evergreen Broadleaf 0.90 

5 Temperate Evergreen Broadleaf 0.90 

Table 1. Plant Functional Types (PFTs) Adjusted in CLM5.0 surface data. 
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Figure 6. CLM5.0 Satellite Phenology Annual Cycle of Boreal ENF LAI. The 12-plot panels 

show the monthly LAI for boreal ENF with LAI values corresponding to the colorbar at the bottom 

of the figure. 

   

2.3.2) Forcing Data  

To test the sensitivity of changing the prescribed LAI we run the CESM2 model using the 

I2010Clm50Sp component set (compset), which runs CLM5.0 in a land-only offline mode, which 

by default is 0.9Á x 1.25Á spatial resolution. In this mode the land model is uncoupled from the 

atmospheric model and therefore requires atmospheric forcing data. We use the standard forcing 

data which is a 110-year dataset from the Global Soil Wetness Project (GSWP3) and ranges from 

1901-2010. The monthly LAI for the I2010Clm50Sp compset are prescribed from MODIS LAI 

climatology as previously mentioned and are located in CLM5.0ôs surface dataset. All other model 

components are left in their default mode according to the CLM5.0 technical note (Lawerence et 

al., 2019).  

2.3.3) Model Initialization  

We run CLM5.0 from a cold start where the initial conditions are arbitrary and therefore some spin 

up time is needed for the state variables to stabilize before running the model forward for analysis. 

For each model run a 50-year spin-up time is used where we cycle 1 year of forcing data from 

GSWP3 (year 1991), then the model is run forward 20 years using years 1991-2010. The surface 

dataset is left unchanged for the control run but is modified for the sensitivity test.  

CLM5.0 defines 15 natural PFTs with PFT 1 and 2 assigned to temperate and boreal ENF, 

respectively, and PFT 4 and 5 assigned to tropical and temperate EBF, respectively (Table 1). For 

each model grid box, the monthly LAI for each of the four PFTs are modified where the fractional 
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percentage of that PFT is greater than zero (Figure 7) using the following piecewise function 

(equation 6), 

ὪὒὃὍ
ὧz ὒὃὍȟὭὪ  ὒὃὍὧz ὒὃὍ

ὒὃὍȟὭὪ  ὒὃὍὧz ὒὃὍ
                     (6) 

where LAI is the monthly LAI, LAImax is the maximum annual LAI, and c is the factor used to set 

the minimum monthly LAI and is 0.87 for PFTs 1 and 2 (Mitchell et al., 2025b; Table B2) and 0.9 

for PFTs 4 and 5. These values are higher than those suggested by Zeng et al. (2002) where the 

corrections were 0.7 and 0.8 for ENF and EBF respectively. Figure 8 shows the modified monthly 

LAI for boreal ENF where the seasonal cycle is less dramatic and reflects a more appropriate LAI 

throughout the year. 
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Figure 7. Global Coverage of Evergreen Tree PFTs. The 4-panel figure shows the grid box 

percentage of each respective evergreen tree PFT according to the colorbar at the bottom of the 

figure.  

  

Figure 8. Adjusted CLM5.0 Satellite Phenology Annual Cycle of Boreal ENF LAI. The 12-

plot panels show the monthly LAI that adjusted using the ratio correction in equation 5 for boreal 

ENF with LAI values corresponding to the colorbar at the bottom of the figure. 

   

2.3.4) Results  

To investigate the impact of changing the seasonal cycle of LAI using the ratio correction 

suggested by Mitchell et al. (2025b), we compared several variables relating to surface energy 

budgets (i.e., albedo, sensible heat flux) and water fluxes (i.e., runoff, evaporation) for the 

sensitivity and control runs. We also address wintertime variables related to snow and SWE to 

investigate the impact of these LAI changes during the boreal winter months, motivated by the 

results of Mitchell et al. (2025b) (Figure B4). Our analyses include visualization of the 20-year 
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average monthly seasonal cycle of variables, the difference between the sensitivity and control 

runs, and time series analysis for each PFT area (Figure 7) and globally. We noticed that there 

were considerable changes to the overall grid box LAI in areas where we changed the LAI, where 

the PFT fraction higher (Figure 9). This is important as the LAI in the CLM5.0 output is related 

to but different than the prescribed monthly MODIS LAI because the model considers the LAI of 

the PFT types along with the actual fraction of vegetation cover and other variables to compute 

the grid box LAI (Lawrence and Chase 2007; Lawerence et al., 2018; Lawrence et al., 2019). 

 

Figure 9. Focus Regions and Minimum Monthly LAI Difference. The map shows the difference 

between the minimum monthly LAI for the sensitivity (ratio corrected) and control runs. The boxes 

represent regions where the LAI difference was high and investigated in further time series 

analysis.   

  

2.3.4.1) Global Maps of LAI and Heat Flux Differences 
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Figure 9 shows the difference between the minimum monthly averaged LAI occurring in boreal 

winter (summer) in the Northern (Southern) Hemisphere for sensitivity and control runs. For 

example, in Canada, Northern Europe and Russia, there are many areas where the LAI difference 

is greater than 2 m2/m2. LAI values in tropical EBF areas were slightly changed. This is consistent 

with previous findings where the MODIS LAI struggle primarily over ENF (Tian et al., 2004; 

Yang et al., 2006; Mitchell et al., 2025b).  

The change in the LAI from the sensitivity test is shown to affect energy fluxes such as latent heat 

flux (Figure 10) and sensible heat flux (Figure 11). Throughout the year we see the largest 

differences in these fluxes during the boreal spring (MAM) and fall (SON) months, where in boreal 

ENF we see a decrease in latent heat flux in April, but increase in October (Figure 10) and 

coincides with the reduction in evapotranspiration in April and increase in October. This change is 

notable and is a component of the seasonal change in the snowpack that is observed in these regions 

when the LAI is increased and is explained further in Section 2.3.4.2.1. The change in boreal fall 

could be a result of this shift in the snowpack in April in addition to a slight increase in the canopy 

evaporation and transpiration during this period. The changes in sensible heat are opposite to those 

observed throughout the year by the latent heat flux (Figure 11), and the sign change, although the 

magnitudes of sensible and latent heat flux do not exactly match over areas where there is 

snowpack in the winter and suggest the retention of the snowpack later into the season plays a 

large role in some of the differences observed by increasing the LAI.  
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Figure 10. Global Seasonal Differences in Latent Heat Flux. The four-panel plot above shows 

the difference between the sensitivity and control run (sensitivity ï control) latent heat flux for the 

months of January, April, July, and October. Values plotted on the maps correspond to the colorbar 

at the bottom of the figure.  
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Figure 11. Global Seasonal Differences in Sensible Heat Flux. The four-panel plot above shows 

the difference between the sensitivity and control run (sensitivity ï control) sensible heat flux for 

the months of January, April, July, and October. Values plotted on the maps correspond to the 

colorbar at the bottom of the figure.  

 

When considering the differences in variables while computing the areal average at the global 

scale we observed very minor differences in the water and energy fluxes between the sensitivity 

and control runs. There were some differences in the control and sensitivity runs when partitioning 

the output by PFT was considered, although there were many areas that had low PFT fraction (i.e., 

boreal forest in Eastern Russia) and while the LAI in these areas were adjusted using the ratio 

correction the impact was minor due to the low PFT fraction. Therefore, when these areas were 

included in the average time series there were some differences between the sensitivity and control 

runs but the magnitude was greatly reduced since the positive and negative anomalies are averaged 
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together and not consistent with the seasonal global map differences of latent heat (Figure 10) and 

sensible heat flux (Figure 11). To investigate the changes to the CLM5.0 model output we selected 

10 areas with relatively large LAI changes to represent temperate and boreal ENF, along with 

tropical EBF (Figure 9).  Annual time series of three regions are discussed in the next section, the 

boreal forest over Western Russia (EUR_1) and the CONUS Pacific Northwest (US_1), and the 

Amazon rainforest over Northern Brazil and Guyana (AMZN_2). 

2.3.4.2) Time Series Analysis  

2.3.4.2.1) Western Russia and CONUS Pacific Northwest  

Figure 12 shows the annual time series for the 20-year averaged monthly CLM5.0 output over 

Western Russia. Figure 12A demonstrates that the LAI is increased by over 60% for the winter 

months (DJF). LAI directly affects the albedo and during boreal winter a slight decrease in the 

albedo is shown (Figure 12K) as the reflected solar radiation decreased during these months with 

the increased canopy coverage. A notable difference is that with the increased LAI, the seasonal 

cycle of snow depth (Figure 12I) and SWE (Figure 12B) are greatly affected in the melt season, 

especially in April where the snow depth and SWE are much higher (greater than 50% compared 

to the control run).  
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Figure 12. 20-year Average Monthly CLM5.0 output Time Series for EUR_1 region. The 

annual cycle using 20 years of 12 different variables from the CLM monthly output averaged over 

the EUR_1 region (Western Russia) from Figure 8.  

 

This finding is expected as the canopy would be cooler due to the increased canopy foliage, thus 

the snow would last longer into boreal spring (MAM) and is reflected by the lower infiltration rate 

of water into the ground in April, but higher in May for this region (Figure 12C). Additionally, the 
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decrease in the temperature in the top 10 cm of the soil in April and especially in May where the 

soil is frozen during boreal winter but the departure from the control during boreal spring (Figure 

12J) supports this shift in the snowmelt as a decrease in the top of the soil temperature typically 

coincides with snowmelt. This shift also means more melted water for transpiration in May 

(Figure 12G). Furthermore, the ground evaporation is also shifted by a month and shows a strong 

signal that the snow is still on the ground and therefore there is no evaporation from the soil until 

May (Figure 12E). The lower longwave net radiation (upward ï downward) also supports this 

argument, as there would be lower temperature due to the presence of the snowpack (Figure 12L), 

but the change is relatively small.  

The shift in the seasonal cycle of snow can affect the partitioning of evaporation and other surface 

water fluxes such as runoff, where the runoff in boreal spring is lower in March and April as the 

snowpack stays longer on the surface (Figure 12D). Since the water is not being partitioned to 

runoff, it is reasonable to assume that some of the water must leave in the form of 

evapotranspiration, and this is demonstrated by the canopy evaporation (Figure 12F). The amount 

of intercepted snow increased throughout the boreal winter months (Figure 12H) and therefore 

some of the snow may remain on the trees with the increased LAI and thus evaporate back to the 

atmosphere. Additionally, the leaves will also transpire during this time of the year as the trees 

become more photosynthetically active and more soil moisture in the root zone (from melted snow) 

is available, and this is reflected in Figure 12G. These changes observed over boreal forest in 

Western Russia were also present in other boreal forest such as those from the CA_1, CA_2, and 

ASIA_1 regions, although not in the same magnitude as the EUR_1 region. For instance, the April 

LAI (SWE) differences are 0.76 (8.18), 0.66 (20.72), 0.95 (12.52), and 1.00 (43.23) m2/m2 (mm) 

for CA_1, CA_2, ASIA_1, and EUR_1, respectively, while the corresponding May 
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evapotranspiration (total runoff) differences are 0.23 (0.12), 0.06 (0.21), 0.17 (0.11) and 0.02 

(0.37) mm/day (mm/day) respectively, and highlight the observed change in the season cycle of 

the snowpack.   

The EUR_1 (Figure 12) and US_1 (Figure 13) regions are compared to investigate differences in 

the boreal and temperate ENF, respectively, given the similarities in processes previously described 

between the EUR_1, CA_1, CA_2, and ASIA_1 regions. The annual differences in LAI in the 

Pacific Northwest (Figure 13A) are similar to those found in the EUR_1 region (Figure 12A), and 

these temperate ENF forest hold onto the SWE later into the spring (Figure 13B), supported by 

the lower ground evaporation during this time period (Figure 13D), albeit the change is more 

gradual than the EUR_1 region (Figure 12B). A notable difference is the albedo is relatively 

insensitive in the temperate ENF (Figure 13I), but this finding is consistent with the lower SWE 

(and snow depth) values as the LAI value is reduced to account for burial in snow (Wang and Zeng 

2009) and thus the albedo is more sensitive in wintertime to areas where there is more snow (i.e., 

EUR_1 and ASIA_1). Furthermore, the total runoff slightly decreases because of the lower 

magnitude of snow during boreal winter for this region (Figure 13G). However, this water is 

accounted for in the canopy evaporation (Figure 13E) and transpiration (Figure 13F) given the 

slight increase in canopy intercepted snow (Figure 13H) in the case of the evaporation, and with 

warmer temperatures in the temperate ENF the transpiration does not completely shut off in winter 

as it does in the boreal regions, demonstrating that the impact of increasing the LAI in boreal 

winter has a greater impact in boreal ENF when compared to temperate ENF due to the impact 

snowpack has on radiation, energy, and water fluxes. These results also pose the question of what 

impacts a changing the LAI would have on a fully coupled model given the shift in seasonal cycle 

of snowpack and where would the water be allocated to.  
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Figure 13. 20-year Average Monthly CLM5.0 output Time Series for US_1 region. The annual 

cycle using 20 years of 12 different variables from the CLM monthly output averaged over the 

US_1 region (Pacific Northwest) from Figure 8. 

  

2.3.4.2.2) Amazon Forest in N. Brazil and Guyana  

The impacts of changing the LAI seasonal cycle for tropical EBF were also investigated where we 

used a slightly higher ratio correction of 0.90 (equation 5). LAI values were changed in these 

regions; however, the changes were relatively small. In the Amazon rainforest the LAI does 

improve with the largest difference in February where the LAI has increased ~20%. The monthly 

LAI values showed the largest differences during the wet season for this region (December ï May) 

(Figure 14A) and is the time of year where the largest differences are expected with one difference 

being the amount of water that is intercepted by the canopy with the increased LAI (Figure 14D).   
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Figure 14. 20-year Average Monthly CLM5.0 output Time Series for AMZN_2 region. The 

annual cycle using 20 years of 12 different variables from the CLM monthly output averaged over 

the AMZN_2 region (Northern Brazil and Guyana) from Figure 8.  

 

When considering the partitioning of runoff and evaporation as was considered for the boreal 

forest, the runoff (Figure 14F) and soil water (Figure 14J) values do not change much at all 

between the sensitivity and control model runs. Therefore, with the increase in canopy intercepted 

water and associated increase in canopy evaporation (Figure 14H), there is a reduction in the 
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amount of water that reaches the ground and thus less ground evaporation (Figure 14G). However, 

the reduced ground evaporation is equally compensated for by the canopy evaporation (Figure 

14H) and with the increased LAI there are more leaves to transpire, leading to a slight increase in 

canopy transpiration (Figure 14I). The net change of these three terms leads to the increase in 

evapotranspiration shown in Figure 14E. and hence latent heat flux (Figure 14B). 

As the forests are already thick, the LAI change has a small effect on soil temperature (Figure 

14K) and surface albedo (Figure 14L). As the net radiation does not change much, the increase in 

latent heat flux (Figure 14B) is compensated for by the decrease in sensible heat flux (Figure 

14C). These findings were similar to those found in the AFR_1, AFR_2, and AMZN_1 regions, 

except the magnitude of the change in LAI and thus the magnitude of change in variables were 

relatively smaller. For instance, the February LAI (evapotranspiration) differences are 0.34 (0.01), 

0.03 (0.00), 0.53 (0.05), and 0.84 (0.07) m2/m2 (mm/day) for the AFR_1, AFR_2, AMZN_1, and 

AMZN_2, respectively. 

2.3.5) Discussion and Conclusions  

In this study the impacts of changing the seasonal cycle of LAI in CLM5.0 based on spaceborne 

lidar measurements, motivated by Mitchell et al. (2025b) and Zeng et al. (2002) were investigated. 

The MODIS monthly LAI data prescribed to the model were adjusted using the ratio correction 

from equation 6 (Figure 8) for ENF and EBF PFTs (Figure 7) and CLM5.0 monthly output 

showed improvement of seasonal cycle of LAI to more reasonable values over ENF (Figure 12A 

and Figure 13A) and EBF (Figure 14A). The results over the Amazon rainforest demonstrated 

that increasing the LAI during the wet season would have the largest impact on the partitioning of 

evapotranspiration with the evapotranspiration itself slightly increased in this region.  
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For the boreal ENF forest, the results showed that changing the LAI seasonal cycle had the greatest 

impact on the seasonal cycle of the snowpack. This change was large and suggest that adjusting 

the LAI to match the seasonal cycle derived from spaceborne lidar could have significant 

implications for a fully coupled model. The changes in the annual cycles of evaporation, snow 

melt, and runoff could have far reaching impacts, not only on local and regional scales, but 

potentially global scales as well.  

2.4. Implications of Combining Remote Sensing, Model, and Ground Observations for the 

Community.  

In this chapter I described three different studies that leverage the use of remote sensing data to 

improve the representation or retrieval of hydrometeorological measurements to further our 

understanding of the water, energy, and carbon cycles. In these studies, I compared remote sensing 

data with in-situ based measurements (Chapter 2.1), then compared passive and active remote 

sensing data retrievals (Chapter 2.2), and adjusted model LAI input data (Chapter 2.3) for 

modeling sensitivity study. I compared data of varying temporal and spatial resolutions, with the 

strategy of averaging the data to a coarser spatial or temporal resolution to allow for fair 

comparisons between the different data products. However, the cost of doing such analyses is the 

loss of information considering the high spatial resolution of spaceborne lidars such as GEDI and 

ICESat-2, and hence some of the advantages active spaceborne lidar provides. This decision of 

coarser spatial resolution to perform analysis at the cost of information, representation, and 

understanding of the data we analyze is one that we face as a community and brings into question: 

is this the right approach for data analysis and what could be the theoretical maximum agreement 

between the modeling, observation data, and remote sensing data?  
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The analyses performed in this dissertation allowed for insights to be gained into the performance 

of snow depths from ICESat-2 and land and vegetation metrics from MODIS, with the goal to 

improve these products to be combined with others to help us to better understand the earth system. 

As alluded to in Chapter 1 for ground-based measurements we are limited by instrumentation and 

coverage. In ESM we are limited by the computational resources of the model in addition to our 

understanding of complex real-world processes. Remote sensing observations help to bridge these 

limitations and by analyzing these measurements with ground-based measurements we can 

discover and learn more about our Earthôs system. The motivation for the work performed in this 

chapter highlights the need for future spaceborne lidar missions, however it is reasonable to 

question: is there a point where new instruments will provide diminishing returns?  

The answer to this question is yes, but we are not there yet as a community, as more observations 

will help us to design more robust models, which then helps us discover new questions and build 

new instruments to collect data. This also depends on the context and what hydrometeorological 

variables we are analyzing, for variables with inter-annual memory vegetation metrics we will 

most likely reach this diminishing return quicker than that of sub-arctic snowpacks where we lose 

the memory each year and thus need more observations, both remote and in-situ to reduce the gap 

in the quantity of those measurements.  I believe the theoretical agreement between models, remote 

sensing, and in-situ observations will never approach R2 = 1.00 between all three. Though, it is 

reasonable to assume that, given the uncertainties in instrumentation, our understanding of the 

earth system, and the randomness of hydrometeorological quantities, we may only be able to 

achieve a maximum agreement of R2 = 0.80 or 0.85. Furthermore, even if we approach this 

theoretical limit of understanding, we can then discover a new approach to go beyond this limit 

and that is the beauty of doing science.   
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CHAPTER 3. CONTRIBUTIONS AND FUTURE WORKS 

This chapter provides a short summary of the present works described in Chapter 2 and explains 

the contributions and implications of the research performed in each project. Future avenues for 

research based on the discussion of uncertainties and conclusions of each project are also provided.  

3.1. Evaluating Snow Depth Estimates from ICESat-2 Lidar Multiple Scattering Measurements  

The ICESat-2 snow depth retrieval developed by Y. Hu et al. (2022) and implemented over the 

Arctic by Lu et al. (2022) was evaluated by Mitchell et al. (2025a). The study used a 

comprehensive approach of using a variety of terrestrial variables and partitioning of snowpack 

conditions (time of snow season and snow density) to evaluate the retrievalôs performance over 

the CONUS region, home to a wide range of land cover and climates to gain insight into improving 

the retrievalôs performance for global application.  

The study first showed that the ICESat-2 snow depth retrievalôs performance decreased the most 

in the presence of tall canopies with considerable canopy coverage and in regions of complex 

terrain (high sloped and high elevation). The work achieved the goal of continuing the research 

done by the first two parts of the study (Y. Hu et al., 2022; Lu et al., 2022) and answers questions 

related to the retrieval performance outside of polar regions and the impact of bottom-layer 

scattering and canopy effects raised by Lu et al. (2022). Secondly, Mitchell et al. (2025a) applied 

a post-processing correction to the retrieval based on canopy height and slope. While this did 

improve mean and median biases slightly, it didnôt improve the overall performance of the 

retrieval. This highlights the need for retrieval improvement in the pre-processing stages (rather 

than at the post-processing stage) for global applications.  
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The data used in Mitchell et al. (2025a) were at 4 km resolution which allowed for a comprehensive 

approach using data from many different sources. However, this resolution did not allow for 

explicit investigation of snowpack conditions (i.e., stratigraphy, liquid water content, temperature), 

which may be important considering the multiple scattering measurement nature of the retrieval 

and the assumption of the snowpack as a uniform scattering medium. Given the uncertainty in 

spatial resolution of snowpack conditions and the high horizontal resolution snow depths from 

ICESat-2 (~7 m), one of the avenues for future work lies in leveraging data from NASA field 

campaigns such as SnowEx (McGrath et al., 2019) where field measurements of snow depth and 

snowpack conditions can be compared with those from ICESat-2. These field data would provide 

a more explicit insight into how the retrieval performs under various snowpack conditions.  

Another implication of the research performed by Mitchell et al. (2025a) is that the study continues 

to demonstrate the global applicability of the retrieval at its current stage and can provide 

measurements where it is difficult to maintain or obtain in situ measurements. Furthermore, this 

work could serve as motivation for future spaceborne missions focused on the retrieval of snow 

depth, especially since single instrument retrievals from ICESat-2 were not included in the four 

main mission goals at launch (Markus et al., 2017) and highlight the novelty of the work done by 

Y. Hu et al. (2022) and Lu et al. (2022), then continued by Mitchell et al. (2025a).  

3.2. Evaluating and Improving the Retrieval of MODIS Wintertime LAI Using Spaceborne 

LiDAR and Surface-Based Measurements 

The MODIS LAI and IGBP LC data are evaluated by Mitchell et al. (2025b) where spaceborne 

lidar measurements and in-situ measurement derived UA snow depth measurements are used to 

investigate the LAI retrievalôs poor performance over evergreen forest during the wintertime 

months. The main finding of the study demonstrated that the LAI struggles the most in ENF where 
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the differences between the winter-to-summer median ratios are highlighted with LAI and PAI 

values of 0.29 and 0.87, respectively. These were further exacerbated by the presence of snow 

where the difference between LAI values in SC and NSC conditions for ENF approached 3 m2/m2, 

highlighting the need for improved MODIS LAI data for evergreen land cover types in temperate 

and boreal regions as these MODIS data are widely used for applications such as ESM (Myneni et 

al., 2002; Lawrence and Chase 2007).  

One of the contributions of the study is to provide a preliminary approach to improve MODIS LAI 

using the GEDI PAI measurements to address these deficiencies in wintertime. The ratio correction 

applied to wintertime LAI measurements, derived from GEDI PAI for tall forest, resulted in a more 

reasonable cycle of MODIS LAI for evergreen vegetation. Secondly, a decision tree approach was 

suggested for retrieval improvement using the GEDI canopy metrics and IGBP LC classifications 

to reclassify MODIS-misclassified LC pixels (Figure B1A, Figure BS4, Figure BS5) and suggest 

not only the need to improve LC data, but that spaceborne lidar measurements can be used for 

improvement of LAI and LC data.  

Mitchell et al. (2025b) only considered LC types where there was tall vegetation (canopy height > 

2 m), because of the uncertainties in the performance of the GEDI over bare and sparse vegetation 

(Tang and Armston 2019) and poor performance over short-statured vegetation (Zhu et al., 2023). 

Our findings highlight the differences and advantages of using a full-waveform lidar like GEDI 

(Dubayah et al., 2020) and photon-counting lidar such as ICESat-2 (Markus et al., 2017) and thus 

motivate the need for a unified canopy height dataset that takes advantage of the strengths of both 

instruments. Other studies have come to a similar conclusion (Liu et al., 2021; Zhu et at., 2022; 

Zhu et al., 2023) and given the importance of LAI in ESMs (Fang et al., 2019; Song et al. 2021) 

and the MODIS LAI retrievalôs dependency on the LC data used, better representation of the 
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canopy height could lead to improved LC data and thus improved LAI retrievals from MODIS 

(Knyazikhin et al., 1999).  

The work of Mitchell et al. (2025b) demonstrated the deficiencies of the MODIS LAI and LC data 

using spaceborne lidar measurements from GEDI. This work serves to motivate future spaceborne 

lidar missions where increased coverage and leveraging of different technologies could provide an 

increased accuracy of the retrieval of canopy metrics globally, which would have positive 

implications for data users and Earth system modelers.  

3.3. Impact on CLM Modeling of Adjusting Leaf-Area Index Seasonal Cycle using Spaceborne 

LiDAR Measurements  

The monthly MODIS LAI prescribed to the CLM5.0 for evergreen PFTs demonstrated large 

changes in the season cycle of LAI, while the adjusted LAI showed a more reasonable LAI 

seasonal cycle. This suggests that the integration of insights gained from spaceborne lidar 

instruments such as GEDI and ICESat-2 into the MODIS LAI data may improve the representation 

of LAI for evergreen forest in ESMs.  

The largest changes between the sensitivity and control model runs were observed over boreal 

ENF where the seasonal cycles for several hydrometeorological factors such as SWE, evaporation, 

runoff, and albedo were impacted by the adjustment to the LAI. These are all important state 

variables and the implications of adjusting the snowmelt and evaporation could have large impacts 

in the fully coupled model (CESM2). Though the results are promising, future work including 

using observations or reanalysis from datasets such as ERA5 and MERRA2 to help validate the 

model output would further strengthen the results from this study. Additionally, the use of another 

land model and intercomparison of their model output with those from CLM5.0 can also reinforce 

the findings of this study.  
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3.4. Other Contributions to Co-Authored Works  

As part of this dissertation research, I also contributed to a paper and a manuscript as the second 

author. First in Xu et al. (2024), published in JGR Atmospheres, I made contributions to the 

following activities: (1) Development of a planetary boundary layer height (PBLH) database 

derived from 760 dropsondes from 2020-2022  in NASAôs Aerosol Cloud meTeorology 

Interactions oVer the western ATlantic Experiment (ACTIVATE) (Sorooshian et al., 2019); (2) 

Comparison and evaluation of mixed layer height (MLH) and PBLH from aerosol backscattering 

profiles from the high spectral resolution lidar version 2 (HSRL-2) onboard NASAôs King Air 

during the ACTIVATE mission; (3) Assistance in development and validation of UA PBLH 

detection algorithm using unstable PBL case dropsondes from ACTIVATE; and (4) comparing 

MLH and PBLH from overlapping CALIPSO flights with the King Air plane. Secondly, for the 

contributions made to Xu et al. (2025), submitted to AMS Journal of Applied Meteorology in April 

2025, I assisted in evaluation of four types of PBLH algorithms based on thermodynamic and 

meteorological variables using the PBLH dropsonde database developed in Xu et al. (2024). 

Finally, I am a coauthor of Y. Hu et al. (2022) and Lu et al. (2022).  

3.5. Concluding Remarks 

The works performed in this dissertation highlight the importance and advantages of using 

spaceborne lidar to retrieve and improve hydrometeorological variables. Mitchell et al. (2025a) 

further demonstrated how snow depths from ICESat-2 can be applied globally by evaluating the 

retrieval over the mid-latitudes, highlighting areas where the retrieval can be improved. Mitchell 

et al. (2025b) used GEDI measurements to evaluate LAI and LC products from MODIS and 

demonstrated that spaceborne lidar measurements can be used to improve the seasonal cycle of 

LAI and IGBP LC classifications. The third study in this dissertation showed that incorporating 
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improved LAI measurements motivated by spaceborne lidar improves the seasonal cycle of LAI 

in CLM5.0 and that hydrometeorological processes over boreal ENF could be impacted by these 

changes. Finally, the works done by Xu et al. (2024) and Xu et al. (2025) demonstrate the need for 

improved technology and techniques in PBL retrieval from lidar. Based on the findings from the 

studies described in this dissertation, I hope that these works will motivate the need for continued 

improvement of the retrieval of hydrometeorological properties from spaceborne lidar and 

highlight the importance of future spaceborne lidar missions continued advancements in lidar 

technology.   
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Abstract 

Snow depth retrieval from the lidar backscattering pathlength distribution has been applied to Ice 

Cloud and Land Elevation Satellite 2 (ICESat-2) lidar measurements in the Arctic and land 

surfaces of the Northern Hemisphere in our recent studies. Here we examine 116 flights over a 

two-year period to investigate the impacts of factors such as vegetation, terrain, and land cover on 

this retrieval. Snow depths from ICESat-2 are compared to the in-situ measurement ï derived 

University of Arizona product for two distinct regions of the contiguous U.S.: the Mountain West 

(complex terrain) and the Great Lakes (homogeneous terrain). Biases between the snow products 

are co-located with several terrestrial datasets (i.e., Moderate Resolution Imaging 

Spectroradiometer (MODIS), Global Ecosystem Dynamics Investigation (GEDI)) and then 

evaluated in terms of time of snow season and snow density to understand the performance of the 

retrieval. The retrieval performs well with overall mean and median biases of -0.10 m and -0.04 

m, respectively. However, performance decreases with increasing snow density and time in the 

snow season, with late season and high snow density period mean absolute errors of 0.38 m and 

0.23 m, respectively and biases being most prominent in mountainous areas. Additionally, factors 

such as canopy height and complexity of the terrain are found to decrease the retrievalôs 

performance. Correcting for some of the retrievalôs weaknesses identified in this study is needed 

for the further improvements of the retrieval.   

Significance Statement 

Snow pack is important for water resources, weather, and climate, and an innovative 

method has been developed to retrieve snow depth from a spaceborne lidar (ICESat-2). 

Here we evaluate this retrieval using our in-situ measurement-based snowpack product 

along with a variety of topography and vegetation datasets over the U.S. Mountain West 

and Great Lakes regions. The retrieval performs well overall, with the worst 

performance in the late snow season or during high snow density period, and with larger 

retrieved snow depth biases over mountainous areas. Additionally, factors such as 

canopy height and complexity of the terrain are found to decrease the retrievalôs 

performance. These evaluations help inform the further improvement of the retrieval for 

a potential future snowpack lidar mission. 
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1. Introduction 

Snowpack is one of the most important wintertime characteristics and the ability to accurately 

measure the snow depth and snow water equivalent (SWE) is important in accounting for the 

global and regional impacts of snowpack on weather, hydrology, and climate (Zeng et al., 2018). 

The network of in-situ snow measurements is generally sparse around the world, and this 

emphasizes the reliance on satellite derived products and global models to accurately account for 

snow depth and SWE, globally. 

The Ice, Cloud and Elevation Satellite-2 (ICESat-2) was launched on 15 September 2018 with the 

Advanced Topographic Laser Altimeter System (ATLAS) instrument to monitor and provide data 

of the cryosphere, land and vegetation heights, clouds and optical thickness, among many other 

data derived from the 532 nm (green) ATLAS laser. The laserôs high 10 kHz repetition frequency 

rate provides these data along the ground tracks at a very high resolution of ~0.7 m with an average 

footprint size of ~11 m (Markus et al., 2017).  

Recently we derived the snow depth from the lidar backscattering pathlength distribution for the 

first time through application of diffusion theory and Monte Carlo lidar radiative transfer 

simulations and applied this retrieval to the ICESat-2 lidar multiple scattering measurements (Y. 

Hu et al., 2022). We also applied the technique to high-latitude regions demonstrating generally 

good agreement with Arctic and terrestrial snow depth datasets (Lu et al., 2022). The use of a single 

instrument greatly reduces the uncertainty in retrieval of snow depth when compared to multi-

measurement techniques using ICESat-2 data such as, snow-on and snow-off measurements 

(Shean et al., 2021; Enderlin et al., 2022; X. Hu et al., 2022, Neuenschwander et al., 2023; 

Deschamps-Berger et al., 2023; Besso et al., 2024), differencing between ICESat-2 altimetry 

measurements and digital elevation models (DEMs) (Treichler and Kªªb, 2017; Liu et al., 2020), 

and over sea ice in combination with spaceborne radar (Kacimi and Kwok, 2020; Kwok et al., 

2020; Hansen et al., 2024). It was also found in Lu et al. (2022) that the retrieval has potential 

challenges in the presence of rough surfaces, high sloped terrain, and bottom layer effects in 

shallow snowpacks (i.e. land surface).  

Building upon these efforts, the objective of this study is to further evaluate the global applicability 

of the retrieval through: (1) investigating the impacts of terrestrial land factors (i.e., topography, 

vegetation, canopy, land cover type) on the performance; (2) using time of snow season and snow 
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density to analyze the performance based on different snowpack conditions; and (3) providing 

further insights into corrections that could be made to the retrieval of snow depth from ICESat-2 

in pre- and post-processing stages. Compared with the evaluation of ICESat-2 data from only 7 

flights in one month in Lu et al. (2022), here we will comprehensively evaluate the retrieval over 

mid-latitude regions using many more (116) flights across two snow seasons over the contiguous 

United States (CONUS). As the home to a wide range of ecosystems, terrain, and types of 

snowpack, CONUS is a suitable region to conduct the performance evaluation for potential global 

applications.  

2. Data and Methods 

a. Data Descriptors 

The ICESat-2 snow depth is derived from the first-, second- and third-order moments of the 

backscattering pathlength based on diffusion theory and Monte Carlo simulations (Y. Hu et al.,  

2022). The snow depth is derived from the ICESat-2 ATL03 geolocated photon data (Neumann et 

al., 2023), which has a footprint size of ~11m and individual footprints are separated by ~0.7 m 

due to the high 10kHz repetition frequency rate of the ATLAS instrument. To increase the signal-

to-noise ratios of surface vertical profiles, the surface returned photons from strong beams are 

aggregated every 10 consecutive laser pulses to give the snow depth a native resolution of ~7 m 

along the ground track direction. Lu et al. (2022) demonstrated that the ICESat-2 method can 

reasonably estimate snow depth with high spatial resolution across high latitude land and sea ice 

areas.  

The in-situ measurement ï derived University of Arizona (UA) snow depth (SD) and SWE product 

(Broxton et al., 2016a; Dawson et al., 2017; Zeng et al., 2018; Broxton et al., 2019) will be used 

as the ñground truthò measurements to evaluate the performance of the ICESat-2 SD retrieval and 

to provide SWE and snow density (i.e., SWE/SD) estimates. The UA product provides daily SWE 

and SD across the CONUS at 4-km resolution from 1981 to present (https://nsidc.org/data/nsidc-

0719). The data are developed through the assimilation and spatial interpolation of in situ SD and 

SWE measurements from the National Resources Conservation Service Snow Telemetry 

(SNOTEL) network (Serreze et al., 1999), the National Weather Serviceôs Cooperative Observer 

network, and gridded precipitation and temperature data from the PRISM dataset (Daly et al., 

2000). The rigorous testing and validation performed for the UA data (Dawson et al., 2018; Cho 

https://nsidc.org/data/nsidc-0719
https://nsidc.org/data/nsidc-0719
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et al., 2019) and its high performance and use to benchmark other snow-depth studies (Broxton et 

al., 2016b; Dawson et al., 2016; Zeng et al., 2018; Cho and Jacobs, 2020; Hao et al., 2023; Broxton 

et al., 2024) make the UA SD and SWE products a suitable in-situ observation-based reference 

dataset to evaluate the performance of the above ICESat-2 snow depth product. 

Different terrestrial datasets are used to help understand the performance of the ICESat-2 SD 

retrieval. Specifically, three MODIS datasets using physical retrievals only are used to provide 

information regarding Normalized Difference Vegetation Index (NDVI) (MOD13Q1, Didan 

2021), Leaf Area Index (LAI) (MCD15A3H, Meyeni et al., 2015), and the International 

Geosphere-Biosphere Programme (IGBP) land cover classification (MCD12Q1, Table S1) 

(Loveland and Belward, 1997; Friedl and Sulla-Menashe, 2022).  

Lidar derived canopy metrics from two different instruments are also used. First, the Global 

Ecosystems Dynamics Investigation (GEDI) L3B data product provides mean and standard 

deviation of canopy heights at 1-km resolution. The products span multiple periods of 

accumulation of individual footprints from the GEDI L2 data (Luthcke et al., 2021) starting from 

the 19th mission week 04 April 2019 with several different end dates (Dubayah et al., 2021). The 

end date of 04 August 2021 is used as it most appropriately coincides with the ICESat-2 data period 

used in this study. Second, the ICESat-2 ATL08 data (i.e., L3A land and vegetation height version 

6 data) are used to provide along-track measurements of several different canopy metrics, 

including canopy height, canopy openness, and cover and many other canopy metrics in 100m 

segments (Neuenschwander et al., 2023). 

The United States Geological Survey (USGS) LANDFIRE 2020 elevation product provides the 

best publicly available elevation data in the CONUS region. The slope (in degrees) and elevation 

(meters above sea level) data at 30-m resolution are used to compute the terrain metrics 

(LANDFIRE, 2020). A description of the variables from each terrestrial dataset can be found in 

Table 1. 

Variable Description 

ICESat-2 ATL08 Variables 
Canopy Height 98th percentile of all canopy photons in an ATL08 100m segment (m) 

Mean Canopy Height Mean of all individual canopy heights within an ATL08 100m segment (m) 

Max Canopy Height  100th percentile of all canopy photons in an ATL08 100m segment (m) 

Canopy Height Std Standard deviation of all canopy photons within an ATL08 100m segment (m) 

Top Canopy Height Std Standard deviation of all top of canopy photons within an ATL08 100m segment (m) 
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Canopy Cover Fraction*  Ratio of canopy photons to the combined number of canopy and ground photons 

within an ATL08 100m segment. 

USGS LANDFIRE Variables 

Elevation Elevation of the surface above sea level. (m)  

Slope The slope of the surface in degrees.  

Slope std ** Standard deviation of the USGS LANDFIRE slope within a 4-km UA grid.   

Elevation std ** Standard deviation of the USGS LANDFIRE elevation within a 4-km UA grid.   

MODIS Variables  

LAI Leaf Area Index (m2/m2) 

NDVI Ratio of the difference of NIR and red MODIS bands to their sum.  

LC Majority Type** Dominant land cover type within a 4-km UA grid. 

LC Forest %**  Percentage of land cover classified as forest within a 4-km UA grid (IGBP #ôs 

1,2,3,4,5,8) 

LC Vegetation %** Percentage of land cover classified as vegetation within a 4-km UA grid (IGBP #ôs 

1-12,14). 

GEDI L3B Variables 
Canopy Height 100th percentile of all GEDI L2 canopy heights within a 1-km pixel 

Canopy Height std Standard deviation of all accumulated GEDI L2 canopy heights in a 1-km pixel 

Table 1. Description of Terrestrial Variables. The table below lists all the terrestrial variables used in the study. 

Variables with a * indicate they were computed from other datasets within the same data. Variables with ** are 

computed during the coarsening of data to match the spatial resolution of the UA Snow Depth and SWE dataset.  

 

b. Data Preparation  

The ICESat-2 datasets use the EPSG:4326 ï WGS84 latitude and longitude coordinate system 

(Neuenschwander et al., 2023, Neumann et al., 2023). All gridded terrestrial raster datasets are 

reprojected to this coordinate system using open-source programming tools: QGIS 3.16 

(www.qgis.org/en/site/) and pythonôs órioxarrayô software packages (corteva.github.io/rioxarray/). 

All gridded datasets are coarsened to match the 4km x 4km spatial resolution of the UA snow depth 

and SWE data. Coarsening of higher spatial resolution datasets to match the UA grid is performed 

using areal averaging, where each grid box value represents the mean of all data values within a 

UA grid box. Similarly, for ICESat-2 ATL08 and ICESat-2 snow depth values, which are along a 

swath or a line, all values within a UA grid box are averaged to compute a single grid box value. 

This step is performed to ensure fair comparisons across all terrestrial datasets. All analyses 

performed in this study use the 4-km resolution data.   

c. Methodology 

To evaluate the performance of the ICESat-2 snow depth retrieval we use the in-situ UA daily 

snow depth and SWE data. One of the key motivations comes from Lu et al. (2022;  Figure 7) 

http://www.qgis.org/en/site/
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where there is general agreement between the UA and ICESat-2 snow depths, but some of the 

individual cross-sections identified large differences in mountainous terrain (Figure 6 in Lu et al., 

2022).  To investigate these differences, we evaluate the retrieval over two different and distinct 

geographical regions of the CONUS (Figure 1), across two snow seasons in 2020 and 2021 in 

which we define the snow season as December ï April (i.e., snow season 2020 represents 

December 2019 ï April 2020), which is designed to capture the dry snowpack and its evolution 

through a transition period into the melt season. The months of October and November are 

excluded to avoid dealing with partial snow cover and very thin snowpack. The two regions 

selected for this study represent contrasting terrains, in which a mountainous section of the western 

U.S. represents complex topography, and the Great Lakes region, a portion of the Midwest U.S. 

was chosen to represent flatter and relatively homogenous terrain. Both domains are suitable as 

they provide a sufficient snowpack for a majority of the snow season.  

 

Figure 1. Spatial Distribution of ICESat-2 SD Bias. All ground tracks where snow depth for ICESat-2 

method 1 or UA SD are greater than 1cm are shown for both years of the study. A total of 116 flights were used 

in the study (58 flights for 2020 and 2021, respectively; Mountain West ï 55 flights, Great Lakes ï 61 flights) 

with each flight producing three individual ground tracks (corresponding to ICESat-2 three strong beams). 

Elevation is shaded in the background with values corresponding to the colorbar in the lower right corner of 

the figure. The colors along the ground track correspond to colorbar to the right of the figure and indicate the 

magnitude and sign of the difference between ICESat-2 and UA snow depths at each location.  
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We use a total of 116 mid-latitude flights across the two-year study period (Figure 1), which is a 

substantially larger sample size than the 7 mid-latitude flights analyzed in Lu et al. (2022). We co-

locate all variables (Table 1) coarsened to 4-km resolution at locations that are not dominated by 

water bodies (IGBP 17). For the MODIS IGBP land cover type data (Table S1), the land cover 

type at a 4 km x 4km grid box is taken as the dominant type within the grid box. To ensure we are 

making a true comparison between the UA SD and ICESat-2 SD we only compare values in which 

the snow depth is greater than 1 cm for either dataset; this reduces the weight of adding zeros into 

the statistics. Finally, to reduce the amount of noise when computing the correlation of the SD bias 

with terrestrial variables, we binned the magnitude of all the terrestrial variables by the median 

bias between the ICESat-2 snow depth and UA data. We use a total of 50 equal sized bins that 

range from the 5th to 95th percentile value of each variable and exclude any individual bins that 

have less than 10 points.  

The ICESat-2 SD retrieval is designed to perform best with a single-scattering pure snow media 

(Y. Hu et al., 2022) and therefore the presence of snow stratigraphy has the potential to impact the 

performance. To further investigate this issue, we examined the bias of the retrieval as a function 

of time of the snow season by splitting the season into three equal parts, early (Dec 1 - Jan 20, 

representing dry snowpack), middle (Jan 21 ï Mar 11, representing transition period), and late 

season (Mar 12 ï Apr 30, representing wet snowpack). The use of this simple yet practical 

classification is motivated by the ICESat-2 SD data availability for the data period in this study: 

most 4-km pixels have one or two ICESat-2 SD estimates only, due to the revisit time of the 

satellite and the measurement requirement of non-cloudy atmospheric conditions.  

Similarly, the biases will be evaluated as a function of snow density (i.e., the ratio of UA SWE to 

snow depth). Specifically, we use low, medium, and high snow densities to represent the lowest 

(related to the early period with dry snowpack), middle (related to transition period), and highest 

third (related to the late season with wet snowpack) of snow density values co-located with ICESat-

2 retrieved snow depth across both years and areas of study. These three snow density categories 

also correspond to different ages of the snowpack. Insights of the retrievalôs performance under 

varying snow density conditions will help the further improvement of SD retrieval and its global 

applicability, as snow density can be computed regardless of date or location. 
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All analyses are performed for all three of the ICESat-2 snow depth methods introduced in Y. Hu 

et al. (2022); however all three in general were shown to perform similarly (Lu et al., 2022 and 

Table S2), therefore in the subsequent sections of this study we only discuss the results for method 

1 which is based on the first moment of the backscattering pathlength (Y. Hu et al., 2022, Lu et al., 

2022).    

3. Results 

a. Spatial and Seasonal Variabilities of Bias 

The spatial distribution of the ICESat-2 and UA snow depth differences are illustrated in Figure 

1. Ground shaded by the blue colors indicate an ICESat-2 underestimation when compared to UA 

snow depth. The magnitude of the bias is shown to be higher in the mountainous terrain when 

compared to that of the Great Lakes region with mean absolute error (MAE) values of 0.26 m 

(Figure 2E) and 0.11 m (Figure 2I), respectively. In the mountain west region, the ICESat-2 SD 

primarily underestimates with the highest magnitudes of bias confined to the high terrain between 

42ÁN and 46ÁN, however some points in the same region show positive biases and an 

overestimation of ICESat-2 snow depth when compared to UA snow depth. Outside of those 

latitudes the bias is relatively neutral in the mountain west region, except in areas where there are 

generally higher elevations and presence of more complexity in the terrain. The bias in the retrieval 

for the Great Lakes region in general increases with latitude. The reason for the latitudinal increase 

can be linked to the higher elevations toward northern Wisconsin when compared to southern 

Wisconsin and once again the presence of more complex terrain in the northern parts of the domain 

approaching Lake Superior. One of the terrestrial factors impacting the performance of the retrieval 

lies in the complexity of the terrain and those impacts are discussed in Sections 3a and 4b.  
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Figure 2. ICESat-2 and UA Snow Depth Comparison. Each panel shows the scatterplot density of the 

ICESat-2 snow depth for ICESat-2 (y-axis) and co-located UA snow depth (x-axis) for the entire, early, 

middle, and late seasons for both regions combined (A-D), the mountain west region (E-H) and the Great 

Lakes region (I-L). Values are shaded according to the color bar on the right, which represents normalized 

point density. Min-max normalization is performed due to the different number of samples for each panel 

(scenario). The red dashed line in each figure shows the 1:1-line, linear regression line is shown in blue, and 

the three values from left to right represent the number of samples / mean absolute error / R2 for each scenario.  

 

Table 2 shows the statistics we use to evaluate the performance of the retrieval, which include 

mean bias, median bias, MAE, and inter-quartile range (IQR), with the latter three metrics being 

more robust and unbiased (e.g., compared with the root mean square error) as the influence of 

outliers in the data is reduced in their computation. The ICESat-2 SD retrieval performs generally 

well when we consider all co-located snow depth for the entire study period with the mean and 

median errors of -0.10 m and -0.04 m, respectively. However, the bias in the late snow season is 

highest across all metrics, and similar results are shown comparing high snow density conditions 

to low and medium snow density conditions. Generally, results are comparable between low snow 

density and early season results (i.e., MAE values of 0.16 m and 0.15 m, respectively), between 

medium snow density and middle season results (i.e., MAE values of 0.22 m and 0.16 m), with 

the largest difference between high snow density and late season results (i.e., MAE values of 0.23 
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m and 0.38 m). Figure S1A shows these similarities and differences between these scenarios and 

demonstrates how the retrieval not only becomes increasingly negatively biased later into the snow 

season and with increasing snow density, but distribution of the bias widens, consistent with the 

IQR values presented in Table 2. Comparing high snow density and late season snowpacks to the 

other scenarios in their respective analysis, the impact of time of snow season is much more 

dramatic, suggesting that changes to the snowpack associated with the transition into northern 

hemisphere spring (i.e., melt/refreezing, presence of liquid water, snow stratigraphy, etc.) do 

negatively impact the performance of the ICESat-2 snow depth retrieval.  

 Mean 

Error 

(m) 

Median 

Error 

(m) 

IQR (m) MAE (m) UA Snow Depth 

(SWE) (m) 

All  -0.10 -0.04 0.22 0.21 0.32 (0.09) 

Snow Density 
Low -0.01 0.00 0.15 0.16 0.20 (0.04) 

Medium -0.10 -0.04 0.24 0.22 0.38 (0.10) 

High -0.18 -0.07 0.26 0.23 0.38 (0.13) 

Season 
Early 0.02 0.00 0.14 0.15 0.20 (0.05) 

Middle -0.07 -0.04 0.16 0.16 0.28 (0.08) 

Late  -0.33 -0.23 0.54 0.38 0.58 (0.18) 

Table 2. ICESat-2 and UA Snow Depth Bias Statistics. The mean error, median error, IQR, mean absolute 

error, and average UA snow depth and SWE for the period of study for method 1 are shown below. Snow density 

values correspond to the analysis performed in terms of snow density and the season corresponds to the seasonal 

analysis performed in this study.  

 

Tables S3 and S4 show the statistics for the Great Lakes and Mountain west regions, respectively. 

In terms of UA SWE and snow depth, the values are higher in the Mountain west region for all 

scenarios with differences increasing later into the snow season and with increasing snow density, 

especially in late season (Mountain west snow depth ï 0.63 m; Great Lakes region snow depth ï 

0.29 m) and high snow density scenarios. When considering the entire snow season, the mean 

biases are more negative in the Mountain West (-0.14 m) than the Great Lakes (-0.03 m), although 

median biases are much closer with -0.05 m and -0.03 m, respectively, signaling that there are 

areas in the Mountain West region where there are high magnitudes of negative bias when 

compared the UA snow depth data.  
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One noticeable difference between the two regions is the sign of the bias changes throughout the 

season and with increasing snow density within the Great Lakes region. This is not present in the 

Mountain West where the biases are negative (except for the median bias in the early season). 

Biases are positive in the Great Lakes region in low and medium snow density scenarios, as well 

as early season, but are still negative in the late season and high snow density scenarios. 

Performance of the retrieval in the Great Lakes region is lowest in low snow density and late 

season, which contrasts the pattern found from the results of Table 2 where the magnitude of all 

metrics increases through the snow season and with increasing snow densities. Additionally, other 

metrics such as IQR and MAE follow different patterns with the MAE the highest in the low snow 

density and late season scenarios. The IQR values remain relatively constant across all snow 

densities with a sign change of the mean and median biases, indicating a shift in the performance 

of the retrieval from overestimation to underestimation in the Great Lakes region. Similar 

conclusions can be drawn from the seasonal statistics as well, except for a slightly higher IQR 

value in the late season. The results of Table S3 support that higher snow densities and changes in 

the snowpack across the snow season may impact the performance of the retrieval.  

The Mountain West region statistics (Table S4) follows a similar pattern to the statistics of Table 

2 which can be attributed to the total number of samples for each region (Mountain West ï 19132; 

Great Lakes ï 10420) and provides context to why the pattern in the statistics for Mountain West 

align with the statistics for the entire data. Tables 2, S3, and S4 demonstrate that the performance 

of the retrieval generally decreases with increasing snow depth and SWE conditions.  

Similar findings can be drawn from a direct comparison of ICESat-2 and UA snow depths 

throughout the season (Figure 2) and frequency distributions of the bias under varying snow 

density conditions (Figure 3). Figure 2 shows that most snow depth values are less than 0.25 m 

for both ICESat-2 and UA snow depths, but also highlights that the tendency to underestimate is 

highest in the late season across both the Great Lakes (Figure 2L) and Mountain West (Figure 

2H) regions, with MAE values of 0.20 m and 0.41 m, respectively. Table 2 shows that SD is higher 

in the late season and the results in the flatter terrain of the Great Lakes region suggest that SD 

could have an impact on the retrievalôs performance. In the Mountain West region, SD is higher 

than in the Great Lakes region (i.e, Figure 2K and 2G) and therefore frequency distributions of 

the bias show a larger left-skew for the Mountain West region (Figure 3E-H) when compared to 
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the Great Lakes region (Figure 3I-L). Note that the larger biases could also be partially contributed 

by two factors:  the uncertainties of the UA snow depth data could be larger due to limited in situ 

measurements in complex terrain and higher elevations, and the representativeness uncertainties 

between ICESat-2 single line measurement and grid-box average UA data.  

 

Figure 3. Bias Distribution based on Snow Density. Low, medium, and high snow densities represent lowest 

(0-33rd percentiles), middle (34th-66th percentiles), and highest third of all co-located snow densities in the study 

(Ò 239; >239 and Ò 291; and >291 kg/m3). The x-axis represents the value of the bias with the x-axis zoomed 

into  1.5 m for viewability with the height of bins determined by the y-axis expressed as a percentage. The 

vertical red dotted line represents the median bias, and orange solid line is the mean bias. The first row of 

histograms (A-D) represents both regions, second row (E-H) the mountain west region, and the last row (I-L) 

shows the results of the Great Lakes region.  

 

b. Correlations of Bias with Terrestrial Variables  

To understand the above results, we correlate biases with the terrestrial variables from Table 1. As 

mentioned in Section 2c, results are first binned based on each variable, followed by the linear 

regression. R2 values can be found in Table 3 and are used to determine the strength of bias 

correlation for each scenario. Among the R2 values from the ñAllò category in Table 3, we find 
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that variables relating to canopy height (i.e., GEDI Canopy Height, 0.74), canopy structure (i.e., 

ICESat-2 Top Canopy Height Std, 0.55), vegetation health (NDVI, 0.59), and complexity of the 

terrain (i.e., Slope Std, 0.68) had the highest impact on the performance of the retrieval. R2 values 

can vary throughout the season and different levels of snow density for all variables, which can be 

attributed to uncertainties contained within the data. For example, the R2 values for the ICESat-2 

canopy metrics are consistently lower than those of the GEDI canopy metrics and this may be 

caused not only by differences in instrumentation (ICESat-2 photon counting vs. GEDI waveform 

strategies), but also by differences in the representativeness of the data that are further discussed 

in Section 4c.  

 Season Snow Density 

Variables All Early Middle Late Low Medium High 

ICESat-2 Variables 

Canopy Height 0.01 0.00 0.00 0.06 0.08 0.28 0.07 
Mean Canopy Height 0.23 0.01 0.21 0.04 0.09 0.65 0.44 
Max Canopy Height  0.08 0.00 0.00 0.25 0.03 0.21 0.01 
Canopy Height Std 0.00 0.01 0.01 0.02 0.04 0.49 0.09 
Top Canopy Height 

Std 
0.60 0.34 0.31 0.29 0.02 0.21 0.53 

Canopy Cover 

Fraction  
0.55 0.43 0.24 0.47 0.01 0.25 0.68 

USGS LANDFIRE Variables 
Elevation 0.46 0.13 0.51 0.25 0.54 0.59 0.31 
Elevation Std 0.72 0.02 0.51 0.65 0.08 0.55 0.80 
Slope 0.66 0.05 0.32 0.53 0.02 0.32 0.65 
Slope std 0.68 0.03 0.37 0.66 0.03 0.54 0.69 

MODIS Variables 

LAI 0.15 0.04 0.02 0.01 0.02 0.31 0.24 
NDVI 0.59 0.02 0.01 0.32 0.00 0.13 0.53 
LC Forest %  0.14 0.02 0.13 0.03 0.19 0.12 0.00 
LC Vegetation % 0.25 0.10 0.16 0.32 0.00 0.20 0.03 

GEDI L3B Variables 

Canopy Height 0.74 0.32 0.54 0.39 0.11 0.00 0.83 
Canopy Height Std 0.38 0.16 0.34 0.67 0.10 0.01 0.64 

Table 3. Correlation Coefficients (R2) of Median Binned Variables with ICESat-2 SD Bias. Linear 

regressions are performed on variables binned along the x-axis for the entire period of the study with co-located 
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ICESat-2 snow depths at 4km spatial resolution. Because the variables are binned, the R2 values for ñAllò are 

not necessarily between those for different periods or snow densities.  

 

The highest correlating variables from Table 3 are shown in Figure 4 where we show the mean 

absolute bias as a function of each variable in addition to the median bias. In general, an increase 

in the magnitude of these terrestrial variables results in an increase in the magnitude of the mean 

absolute bias and underestimation by the retrieval (shown by the median bias). The variables 

shown in Figure 4 generally have the higher R2 values for the high snow density and late season 

scenarios supporting the case that these variables are the most impactful when the retrieval 

performs the worst. ICESat-2 ATL08 canopy cover fraction (Figure 4B), top of canopy roughness 

(Figure 4C), and Slope (Figure 4E) variables show higher variance but follow the same 

relationship. Slope standard deviation (Figure 4H) contains the highest negative median biases, 

with the highest values coinciding with the largest amount of slope standard deviation. Variables 

related to canopy structure and terrain are generally associated with the highest magnitudes of 

mean absolute bias. Additionally, sensitivity tests were performed where we changed the 

(minimum) number of samples per bin (values ranging from 10 ï 100), and (maximum) number 

of bins (values ranging from 20 ï 70), with similar results (Table S5). Changing the number of 

bins was found to show more sensitivity than the number of samples per bin, because of the large 

number of samples for each terrestrial variable analyzed.  
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Figure 4. Scatterplots of the highest correlating variables from Table 3. Variables are binned along the x-

axis with blue and orange dots representing the median and mean absolute bias (MAE) of each bin, respectively. 

The y-axis represents the difference between the ICESat-2 and UA snow depth. The three numbers at the bottom 

of each panel from left to right represent the total number of samples / R2 for median bias (blue) / R2 for mean 

absolute bias (orange). Note Elevation Std is omitted from the figure to reduce redundancy with Slope and Slope 

Std variables (Figure S2).  

   

Intercomparison between the USGS LANDFIRE terrain variables (Figure S2) shows that snow 

depth increases with elevation (Figure S2E), with peaks in highest elevations of each region. 

However, results also demonstrate that elevations above 1000 m coincide not only with higher 

sloping terrain (Figure S2A) but are related to increasingly variable slopes (Figure S2B), hence 

the higher R2 values for the slope (R2 = 0.66) and slope std (R2 = 0.68). The standard deviation of 

the slope represents how much the slope is changing within a 4-km grid box and is representative 

of the complexity of the terrain, and thus, we link the increase in bias not only to overall snow 

depth due to increases in elevation, but more importantly to the complexity of the terrain.  

Table 3 showed that the percentage of forest and vegetation cover had weak correlations with the 

ICESat-2 snow depth bias with R2 values of 0.07 and 0.39, respectively. Figure 5 summarizes the 

mean and median biases as a function of land cover types. All land cover types except for five 
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(IGBP types 2, 3, 11, and 15, 16) are represented with at least 100 data points, demonstrating the 

diversity in land cover types covered in this study. Collectively, through the entire snow season the 

retrieval performs well (Figure 5A), with the highest mean bias of ~0.2 m for Savanna land type 

classes (IGBP types 8 and 9). Early in the season (Figure 5B), performance decreases in the mixed 

(IGBP 5) and deciduous forest (IGBP 4), with a tendency to overestimate. This finding is likely 

coincidental with the results of Figure 2J where the Great Lakes region in the early season shows 

a tendency to overestimate (with flights for IGBP 4 and 5 coinciding more with areas over this 

region). Performance in the middle (Figure 5C) and late season (Figure 5D) decreases in savanna, 

grassland, and forested land cover types. Overall, the magnitudes are much larger in the late season 

which is consistent with the larger magnitudes of bias from Table 2.  

 

Figure 5. ICESat-2 Bias vs. IGBP Land Cover Type. The mean (red) and median (blue) biases (with at least 

100 points) are shown across each land cover type (see Table S1) as a function of season. The four panels 

represent different parts of the snow season, with all months shown in panel (A), early season (Dec 1 ï Jan 20) 

(B), middle season (Jan 21 ï Mar 11) (C), and late season (Mar 12ï Apr 30) (D). Note the difference in scale of 

y-axis for panel (D).  

 

4. Discussion 
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a. Impacts of Seasonality and Snow Density on ICESat-2 Retrieval 

Section 3a reveals that the ICESat-2 retrieval of snow depth performs generally well when we 

consider the entire study period, but the performance becomes worse at locations with higher snow 

density and later into the snow season. The properties of the snowpack over land can change 

throughout the season due to a variety of factors, including the environmental air temperature, 

temperature gradients within the snowpack caused by the contact with the air and ground, and 

changes in the form of the water contained in the snowpack (i.e., melting and refreezing). These 

changes to the snowpack can cause distinct stratigraphic layers of varying snow density to form 

over the course of a season (Awasthi and Varade, 2020).  

Our methodology does not directly account for these environmental factors, but it is implied in the 

assumption that the snowpack builds throughout the snow season with highest values of snow 

depth and SWE in the late season which is shown in Table 2. The presence of liquid water content 

(LWC) in the snowpack can impact the retrieval by changing the scattering properties of the snow 

media since the retrieval performs best under pure snow conditions (Y. Hu et al., 2022).  However, 

LWC is difficult to measure and has only been performed at plot and hillslope scales requiring a 

combination of ground-penetrating radar, snow pit measurements and remote sensing (Webb et al., 

2018, Bonnell et al., 2021, Ravasio et al., 2024). LWC is related to, but cannot be estimated from, 

snowmelt extent monitoring (e.g., Nagler et al. 2016). LWC has also been shown to be highly 

variable both spatially and temporally during the melt part of the snow season and that the liquid 

water can run along stratigraphic layers formed in the snowpack, and the spatial variability can be 

further exacerbated by complex topography (Webb et al. 2018). When comparing the results of the 

Great Lakes and Mountain West regions (i.e., Figure 1, Tables S3 and S4) especially late in the 

snow season, the metrics are all much higher in magnitude in the Mountain West and could be the 

result of the presence of LWC and complex topography. Contrarily, when comparing the ratio of 

the median bias to the average UA snow depth in the late season (Mountain West ï 40%; Great 

Lakes ï 62%) shows that the relative bias is higher in the Great Lakes region where it is more 

likely the snowpack has become ripe during the months of March and April and the presence of 

LWC could be more impactful on the performance of the retrieval.  

LWC and snow stratigraphy data are unavailable for the large size of the domains used in this 

study. As they affect the overall density of the snowpack, we can partially address their impacts on 
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the retrievals using the daily density available from the UA product (Broxton et al. 2019).  

Partitioning the data in terms of time of season and by snow density, combined with snow depth 

and SWE measurements, can also help provide context and insights to changes in the snow 

microstructure and metamorphism under varying scenarios. For instance, the difference in the 

mean and median biases for the late season and high snow density scenarios (Table 2) strengthen 

the argument that effects related to temperature on snowpack may impact the performance of the 

retrieval more than the depth or density of the snowpack. The higher SWE present in denser 

snowpacks (Table 2) and the implied changes to the properties of the snowpack (especially the 

potential presence of multiple distinct layers of snow) throughout the season in these areas could 

have similar impacts to bottom layer scattering effects described in Lu et al. (2022) and requires 

further investigation that accounts for these environmental and snow stratigraphy factors.   

b. Effects of Land Surface Factors  

Among a variety of land surface variables spanning several datasets (Table 1), Section 3b 

demonstrates that the height of the canopy, canopy structure, health of vegetation, and complexity 

of terrain all negatively impact the performance of the retrieval (Figure 4). Additionally, many of 

the forest types (IGBP types 1, 4, 5, 8) are linked to the highest mean and median biases, especially 

in the late season (Figure 5).  

The ICESat-2 snow depth retrieval has been shown to perform the best over smooth and flat snow 

surfaces based on the analysis of pulse stretching widths within snow profiles performed in Lu et 

al. (2022). The slope of the terrain has a direct impact on the width of the pulse spreading (causing 

the spreading to be wider) and correlations of bias with variables such as Slope and Slope Std 

support the impact of complex terrain on the retrieval of snow depth (Figure 4, Figure S2B). 

Furthermore, canopy can intercept snowfall and impact its local distribution, both can lead to 

increases in the surface roughness of the snowpack in these areas. The lidar backscattering profile 

can be impacted by the presence of canopy and increases in the magnitude of the canopy metrics 

coinciding with increases in the bias of the retrieval further supports this reasoning.  

With the insights gained from Figure 4, we can assess the impact of a postprocessing bias 

correction of the snow depth on the overall performance of the retrieval. As slope (R2 = 0.66) and 

GEDI canopy height (R2 = 0.74) variables are highly correlated to the decrease in the performance 

of the retrieval, we can simply apply the bias correction based on the linear regressions of the 
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median bias from Figure 4. For instance, correcting by GEDI canopy height (Figure 4A) improved 

the mean bias using all the data from -0.10 m to -0.05 m and median bias from -0.04 m to -0.00 m. 

The IQR and MAE also improved slightly by ~0.01 m each. Figures S1B and S1C illustrate that 

the performance would be improved the most in high snow density and late season scenarios 

(where biases were the most negative) but decreased in low snow density and early season 

scenarios (where biases were more neutral or positive). Furthermore, the size of the boxplots from 

the bias corrections are similar to those without bias correction (Figure S1A), showing more a 

translation of the bias rather than an improvement in the retrievalôs performance itself. More 

sophisticated bias correction techniques could be applied to the data, but we believe the better 

approach going forward is to use the insights gained from the analysis performed in this study to 

improve the retrieval itself.  

c. Uncertainties within Land Surface Factors 

For land surface variables correlated to the ICESat-2 snow depth biases, R2 values may differ for 

each region. Variables relating to terrain impact the retrievalôs performance less in the Great Lakes 

region where terrain is generally a non-factor (e.g., Slope Std R2: 0.69 versus 0.42 over the 

Mountain West). There can also be instances where the impact of canopy can be exacerbated by 

terrain (i.e., ICESat-2 Canopy Height R2: MW ï 0.77; GLR ï 0.41) and further demonstrate the 

impact of canopy but when we consider both regions the R2 values are generally much lower for 

ICESat-2 vegetation metrics when compared to GEDI.  

Canopy variables from ICESat-2 and GEDI are obviously correlated (Figure S3), and the key 

reason for differences in their R2 values lies in the representativeness of the data. For instance, the 

spatial resolution from GEDI L3B data natively is 1-km x 1-km and comprised of more than two 

years of accumulated footprints (Dubayah et al., 2021). In contrast, the ICESat-2 ATL08 dataset is 

representative of a single pass (Neuenschwander et al., 2023) and may be subject to more 

uncertainty than the GEDI L3B data, especially considering the structure of the canopy does not 

necessarily change across different snow seasons (except for canopies comprised of deciduous 

vegetation). This is similar to the discussion of representativeness regarding the snow depth 

datasets in Section 3a. The point is that differences between single pass measurements of lidar 

(ICESat-2) and gridded datasets (i.e., UA Snow Depth and SWE, MODIS, GEDI, USGS 

LANDFIRE) introduce uncertainty into the representativeness of the variables used in this study. 
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Additionally, in comparison to variables related to canopy structure, the canopy height itself is 

more neutral in terms of median bias and coarsening of all the data to 4-km resolution of the UA 

data may reduce the uncertainty in some of the factors that impact the retrieval of the snow depth 

from ICESat-2, but higher resolution information may be lost in the process as well.  

It is important to note that the R2 values discussed here demonstrate the correlation of the ICESat-

2 SD retrieval uncertainties with various vegetation and topography metrics, rather than imply the 

causality. Also note that the various vegetation and topography metrics in Figure 4 are not 

independent of each other (e.g., the elevation standard deviation is closely correlated with slope 

and GEDI canopy).   

 

5. Summary 

In this article we evaluate the performance of the ICESat-2 snow depth retrieval using the in-situ 

measurement ï derived UA product as the reference dataset for two regions of the CONUS, a 

section of the Mountain West U.S. to represent complex terrain, and a section of the Great Lakes 

region to represent flatter terrain. The retrieval performs well when we consider all co-located 4 

km grid boxes with mean and median biases of -0.10 m and -0.04 m, respectively. However, the 

bias becomes worse with increasing snow density and time into the snow season, with the greatest 

negative biases found in the late season and higher density snowpacks. Additionally, results from 

the Great Lakes region show positive biases in the early season (0.07 m) and low snow density 

(0.11 m) scenarios. We partially attribute the increase in bias magnitude to the increase of snow 

depth and SWE throughout the season. Based on correlations with the bias, we find that several 

terrestrial factors, such as canopy height, structure, and vegetation health, strongly decrease the 

retrievalôs performance, with canopy structure showing the highest impact. Finally, we 

demonstrate that the performance decreases with increasingly complex terrain at higher elevations 

particularly in the Mountain West region where we see the largest decreases in the performance of 

the retrieval.  

Motivated by these analyses, we use a simple post-processing bias correction to attempt to improve 

the performance but find that this shows more a translation of the bias rather than an improvement 

in the retrievalôs performance itself. This suggests that future studies are needed to use the insights 
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gained from our analyses to improve the retrieval itself. Additionally, the improvement of the snow 

depth retrieval from ICESat-2 needs to explicitly address the impact of environmental factors (e.g., 

diurnal cycle of temperature) and specific properties of the snowpack (i.e., microstructure and 

metamorphism) in future studies.  
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Table S1. International Geosphere-Biosphere Programme (IGBP) Legend and Class 

Descriptions. The table below identifies the name, corresponding land cover type number, 

description for the IGBP land cover types (Loveland and Belward 1997; Friedl and Sulla-Menashe 

2022). The forest and vegetation columns represent how this study distinguishes each IGBP class 

in terms of if each type is forested and/or vegetated. These last two columns are used to calculate 

the land cover percentage variables from Table 1.  

 

Name  Value  Description  Forest Vegetated 

Evergreen Needleleaf Forests  1  Dominated by evergreen conifer trees 

(canopy  

>2m). Tree cover >60%.  

Yes Yes 

Evergreen Broadleaf Forests  2  Dominated by evergreen broadleaf and 

palmate trees (canopy >2m). Tree cover 

>60%.  

Yes Yes 

Deciduous Needleleaf 

Forests  

3  Dominated by deciduous needleleaf (larch) 

trees (canopy >2m). Tree cover >60%.  

Yes  Yes 

Deciduous Broadleaf Forests  4  Dominated by deciduous broadleaf trees 

(canopy  

>2m). Tree cover >60%.  

Yes Yes 

Mixed Forests  5  Dominated by neither deciduous nor 

evergreen (40-60% of each) tree type 

(canopy >2m). Tree cover >60%.  

Yes Yes 

Closed Shrublands  6  Dominated by woody perennials (1-2m 

height)  

>60% cover.  

No Yes 

Open Shrublands  7  Dominated by woody perennials (1-2m 

height) 10-60% cover.  

No Yes 

Woody Savannas  8  Tree cover 30-60% (canopy >2m).  Yes Yes 

Savannas  9  Tree cover 10-30% (canopy >2m).  No Yes 
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Grasslands  10  Dominated by herbaceous annuals (<2m).  No Yes 

Permanent Wetlands  11  Permanently inundated lands with 30-60% 

water cover and >10% vegetated cover.  

No Yes 

Croplands  12  At least 60% of area is cultivated cropland.  No Yes 

Urban and Built-up Lands  13  At least 30% impervious surface area 

including building materials, asphalt, and 

vehicles.  

No No 

Cropland/Natural Vegetation 

Mo- saics  

14  Mosaics of small-scale cultivation 40-60% 

with natural tree, shrub, or herbaceous 

vegetation.  

No Yes 

Permanent Snow and Ice  15  At least 60% of area is covered by snow and 

ice for at least 10 months of the year.  

No No 

Barren  16  At least 60% of area is non-vegetated barren 

(sand, rock, soil) areas with less than 10% 

vegetation.  

No No 

Water Bodies  17  At least 60% of area is covered by 

permanent water bodies.  

No No 

 

Table S2. ICESat-2 SD and UA Snow Depth Bias Statistics. The mean error, median error, IQR, 

mean absolute error, and average UA snow depth for the period of study for methods 2 and 3 (from 

Y. Hu et al. 2022) are shown below. Snow density values correspond to the analysis performed in 

terms of snow density and the season corresponds to the seasonal analysis performed in this study. 

These results are very similar to those using method 1 in Table 2.  

 
Mean 

Error (m) 

Median 

Error (m) 
IQR (m) MAE (m) 

UA Snow 

Depth 

(SWE) (m) 

Method 2 

All  -0.11 -0.03 0.22 0.20 0.32 (0.09) 

Snow Density 

Low -0.01 0.00 0.15 0.15 0.20 (0.04) 

Medium -0.11 -0.04 0.25 0.21 0.37 (0.10) 

High -0.19 -0.07 0.27 0.23 0.38 (0.13) 

Season 

Early 0.01 0.00 0.13 0.14 0.20 (0.05) 

Middle -0.08 -0.03 0.17 0.16 0.28 (0.08) 

Late  -0.34 -0.23 0.56 0.38 0.58 (0.18) 

Method 3 

All  -0.14 -0.05 0.24 0.21 0.32 (0.09) 

Snow Density 

Low -0.04 -0.01 0.15 0.15 0.20 (0.04) 

Medium -0.14 -0.06 0.26 0.22 0.38 (0.10) 

High -0.21 -0.08 0.28 0.24 0.38 (0.13) 

Season 

Early -0.02 -0.01 0.13 0.13 0.20 (0.05) 

Middle -0.10 -0.05 0.18 0.16 0.28 (0.08) 

Late  -0.37 -0.25 0.58 0.40 0.58 (0.18) 
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Table S3. Great Lakes Region Statistics. The same as Table 2 in the main text but for only the 

Great Lakes Region. The mean error, median error, IQR, mean absolute error, and average UA 

snow depth and SWE for the period of study for method 1 are shown below. Snow density values 

correspond to the analysis performed in terms of snow density and the season corresponds to the 

seasonal analysis performed in this study.  

 

 

 

 

 

 

 

 

 

Table S4. Mountain West Region Statistics. The same as Table 2 in the main text but for only 

the Mountain West Region. The mean error, median error, IQR, mean absolute error, and average 

UA snow depth and SWE for the period of study for method 1 are shown below. Snow density 

values correspond to the analysis performed in terms of snow density and the season corresponds 

to the seasonal analysis performed in this study.  

 Mean 

Error (m) 

Median 

Error (m) 
IQR (m) MAE (m) 

UA Snow 

Depth 

(SWE) (m) 

All -0.14 -0.05 0.34 0.26 0.39 (0.11) 

Snow Density 

Low -0.03 -0.01 0.19 0.17 0.23 (0.05) 

Medium -0.14 -0.06 0.36 0.27 0.47 (0.12) 

High -0.30 -0.15 0.53 0.36 0.56 (0.19) 

Season 

Early -0.01 0.00 0.19 0.17 0.24 (0.06) 

Middle -0.08 -0.03 0.27 0.21 0.35 (0.09) 

Late -0.36 -0.25 0.63 0.41 0.63 (0.20) 

 

  

 Mean 

Error (m) 

Median 

Error (m) 
IQR (m) MAE (m) 

UA Snow 

Depth 

(SWE) (m) 

All -0.03 -0.03 0.11 0.11 0.18 (0.05) 

Snow Density 

Low 0.11 0.01 0.12 0.13 0.10 (0.02) 

Medium 0.01 -0.01 0.10 0.09 0.14 (0.04) 

High -0.09 -0.06 0.13 0.12 0.22 (0.08) 

Season 

Early 0.07 0.01 0.10 0.12 0.13 (0.03) 

Middle -0.05 -0.04 0.10 0.09 0.18 (0.06) 

Late -0.20 -0.18 0.18 0.20 0.29 (0.11) 
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Table S5. Binning Sensitivity Test and corresponding R2 Values. The table below shows the R2 

values for the median bias for all variables in Figure 4 from the main text. The left column 

represents each different test, with the (maximum) number of bins (black) and (minimum) number 

of samples per bin (blue) for each scenario, each row shows the corresponding R2 values for each 

variable. The highlighted row shows the scenario described in the Methodology section of the main 

text.  

# of Bins / # 

of samples 

per bin 

GEDI 

Canopy 

Height 

ICESat-2 

Top of 

Canopy 

Height Std 

ICESat-2 

Canopy 

Cover 

Fraction 

MODIS 

NDVI 

USGS 

LANDFIRE 

Slope 

USGS 

LANDFIRE 

Slope Std 

50 / 10 0.74 0.60 0.55 0.59 0.66 0.68 

Changing Number of Samples per Bin 

50 / 20 0.74 0.60 0.55 0.59 0.66 0.68 

50 / 30 0.74 0.60 0.55 0.59 0.66 0.68 

50 / 50  0.74 0.60 0.55 0.59 0.66 0.68 

50 / 100 0.74 0.57 0.55 0.59 0.66 0.68 

Changing Number of Bins 

30 / 10 0.81 0.73 0.61 0.69 0.79 0.82 

40 / 10  0.72 0.68 0.58 0.61 0.66 0.75 

60 / 10 0.69 0.59 0.56 0.58 0.66 0.73 

70 / 10  0.67 0.54 0.50 0.49 0.56 0.69 
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Figure S1. Boxplots of ICESat-2 Snow Depth and UA Snow Depth Bias. The 3-panel plot 

shows boxplots for the distribution of the bias between the ICESat-2 snow depth (method 1) and 

UA snow depth for the entire period of the study and for the six different scenarios depicted in 

the Methodology section (low, medium, and high snow density; early, middle, and late snow 

season). The top plot shows boxplots for bias without correction, the middle and bottom plots 

show bias after corrections made for GEDI Canopy Height and USGS Slope (Section 4.2). 

Height of the boxplots show the IQR range (25th to 75th percentile), red dashed line represents the 

mean, orange line represents the median, and whiskers represent 1.5*IQR from bounds of the 

boxplot. Boxplots correspond to their specific scenario according to the x-axis. The thick gray 

line represents where y=0.      
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Figure S2. Relation of Elevation Metrics with Slope Metrics and Snow Depth. (a-b) The USGS 

LANDFIRE binned elevation and slope metrics, (c-d) elevation standard deviation and slope 

metrics, and (e-f) elevation metrics and UA snow depth for all collocated ICESat-2 snow depth 

data points used in Table 3. All x-axis variables are binned by the median value of the y-axis 

variable as described in the Methodology section. The red line in each panel represents the 1:1 line.   
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Figure S3. ICESat-2 and GEDI Canopy Metrics Intercomparison. (a-b) Between the ICESat-

2 canopy height metrics, (c-e) between ICESat-2 and GEDI canopy height metrics, and (f-g) 

ICESat-2 and GEDI canopy height standard deviation metrics for all collocated ICESat-2 snow 

depth data points used in Table 3. All x-axis variables are binned by the median value of the y-axis 

variable as described in the Methodology section. The red line in each panel represents the 1:1 line.
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Abstract 

The retrieval of MODIS LAI is known to struggle in the winter months, especially over high-

latitude evergreen forests. This issue is addressed here using the Global Ecosystem Dynamics 

Investigation (GEDI) spaceborne lidar measurements and the University of Arizonaôs in-situ 

observation-based snow depth data that are co-located with MODIS LAI and land cover (LC) 

products over the CONUS for a two-year period (2019-2021) Comparisons between GEDI plant 

area index (PAI) and MODIS LAI reveal inconsistencies in wintertime LAI and PAI for some LC 

types, especially in evergreen forests, where the median GEDI PAI and MODIS LAI 

summer/winter ratios are 0.87 and 0.29 respectively. The sensitivity to snow cover is highest in 

evergreen forests where LC analyses also demonstrate the highest potential for misclassified 

pixels. One way to improve wintertime MODIS LAI is by applying a winter/summer ratio post-

processing correction developed from GEDI PAI data, which demonstrated improvement over 

evergreen forests. A decision tree approach utilizing GEDI measurements is also suggested to 

improve the determination of LC types, which would also affect the MODIS LAI retrieval. These 

results demonstrate that spaceborne lidar data can be used to improve the passive remote sensing 

LAI data retrieval in winter for a variety of applications such as earth system modeling.  

Significance Statement 

The MODIS satellite leaf area index (LAI) data are widely used in the world, but their performance 

in wintertime decreases for evergreen forests. We use measurements from the recent GEDI 

spaceborne lidar mission (canopy cover, canopy height, and plant area index (PAI)) to evaluate the 

MODIS LAI retrieval. We find large inconsistencies between wintertime LAI and PAI in evergreen 

forests, where sensitivity to snow cover is highest, and land cover type analyses demonstrate high 

potential for misclassified pixels. Solutions to improve the LAI product for evergreen forests 

during wintertime using GEDI data are presented, demonstrating measurements from current and 

future spaceborne lidar missions can help improve passive remote sensing LAI data in winter for 

applications such as earth system modeling. 

1. Introduction 

Leaf area index (LAI) directly affects land surface carbon, water, and energy budgets and hence 

plays an important role in Earth system models (ESMs) (Fang et al., 2019, Song et al., 2021). The 
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satellite Moderate Resolution Imaging Spectroradiometer (MODIS) LAI data are widely used for 

ESMs (Fang et al., 2019). However, studies have shown that there are inconsistencies in the 

MODIS LAI seasonal cycle for some land cover (LC) types (known as plant functional types in 

ESMs), particularly for evergreen needleleaf vegetation with the MODIS LAI approaching zero in 

the winter months (Tian et al., 2004, Yang et al., 2006, Heiskanen et al., 2012).  

Land surface snowpack is an important characteristic of wintertime and affects weather, hydrology, 

and climate at global and regional scales (Zeng et al., 2018). LAI can strongly influence the 

interception of snowfall and surface energy balance during winter months and thus impact the 

treatment of snowpack during the winter months (Wang et al., 2016). Therefore, uncertainties of 

the LAI data in winter would strongly affect the snowpack and land surface energy balance in 

ESMs.  

In recent years, advancements in remote sensing have provided additional data from spaceborne 

lidars such as the Ice Cloud and Land Elevation Satellite version 2 (ICESat-2) (Markus et al., 2017) 

and the Global Ecosystem Dynamics Investigation (GEDI) (Dubayah et al., 2020) that are designed 

to provide high accuracy and precision vegetation properties worldwide. Fusion of MODIS LAI 

data with high-resolution datasets from instruments such as Landsat have already demonstrated 

the ability to improve LAI datasets (Anderson, 2012; Gao et al., 2012; Wu et al., 2012; Houborg 

et al., 2016). However, one key advantage of using active spaceborne lidar over passive 

measurements is that the lidar can derive LAI at the footprint scale using the retrieved 3-D structure 

of the canopy without weaknesses such as oversaturation or sensitivity to sun angle (Yan et al., 

2019; Wang and Fang 2020).  

Instruments such as GEDI leverage this ability to actively retrieve the LAI from canopies and in 

this study, we use the GEDI data to achieve two goals: (1) to investigate the issues of wintertime 

MODIS LAI and determine whether the issues are related to deficiencies in the retrieval or the 

MODIS LC type data that serves as an input to the LAI retrieval? and (2) to present preliminary 

solutions to correct the wintertime MODIS LAI and MODIS LC type data using spaceborne lidar 

measurements from GEDI.  

2. Data and Methods 

a. Data Descriptors  
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The 4-day 500 m MODIS Leaf Area Index (LAI) (MCD15A3H, Myneni et al., 2015) dataset and 

MODIS yearly land cover (LC) (MCD12Q1) dataset based on the Internation Geosphere-

Biosphere Programme (IGBP) classification (Loveland and Belward, 1997; Freidl and Sulla-

Menashe, 2022) are the two datasets that are investigated in this study. Figure S1 shows the 

MODIS LC types over the contiguous U.S. (CONUS) and a table of the IGBP LC classifications 

can be found Table S1. The MODIS datasets used in this study are reprojected to the 1984 World 

Geodetic System latitude and longitude coordinate system (EPSG:4326) and downloaded using 

the NASA AppEEARS website (https://appeears.earthdatacloud.nasa.gov/). We only use the main 

radiative transfer algorithm retrieved MODIS LAI data which are obtained by using the 

óFparLai_QCô to identify and remove empirically derived (back-up algorithm) pixels (Knyazikhin 

et al., 1999).   

GEDI is a full waveform lidar onboard the International Space Station (ISS) that provides high-

resolution 3D vertical structure of the canopy between 51.6ÁN and 51.6ÁS. The GEDI Level 2B 

Canopy Cover and Vertical Profile metrics data are used in this study, including canopy height, 

canopy cover and plant area index (PAI) at a footprint size of 25 m. The GEDI L2B data can be 

downloaded from NASAôs LPDAAC (Dubayah et al., 2021). We accumulate GEDIôs 25 m 

footprints from 2019-2021 to produce 2 years of summer (JJA) and winter (DJF) grids that are co-

located with the MODIS 500 m grids using a nearest-neighbor approach (Figure S2). The GEDI 

data with the highest quality footprints are used (Tang and Armston 2019). Note that many gaps 

are still present when the GEDI data are gridded to the MODIS grids that are caused by, but not 

limited to the time period of accumulated footprints, irregular track of the ISS, and atmospheric 

factors (e.g., clouds) that reduce the quality of the GEDI data. We use the PAI measurements from 

GEDI as the instrumentôs full-waveform technology allow for retrieval of the 3-D structure of the 

canopy (Dubayah et al., 2020) instead of the photon-counting strategy used for ICESat-2 (Markus 

et al., 2017). 

The in-situ measurement ï derived University of Arizona (UA) snow depth (SD) and snow water 

equivalent (SWE) product (Broxton et al., 2016; Dawson et al., 2017; Zeng et al., 2018; Broxton 

et al., 2019) provides daily SD and SWE for the CONUS at 4-km resolution from 1981 ï present. 

The data are developed through the assimilation and interpolation of measurements from PRISM 

(Daly et al., 2000), the Natural Resources Conservation Snow Telemetry (SNOTEL) network 

https://appeears.earthdatacloud.nasa.gov/
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(Serreze et al., 1999) and the National Weather Serviceôs Cooperative Observer network. Data can 

be obtained from the National Snow and Ice Data Center (https://nsidc.org/data/nsidc-0719ьЮ 

b. Methodology 

The MODIS LAI main algorithm retrieval relies on the inputs of the MODIS LC and surface 

reflectance data in combination with a radiative transfer model and biome look-up table to produce 

the final MODIS LAI product. Misclassification of LC type can introduce bias into the retrieved 

LAI (Knyazikhin et al., 1999). Therefore, it is important to investigate the potential deficiencies 

of both the MODIS LAI and LC data.  Evaluation of the MODIS LAI product is performed only 

for non-water LC types that have more than 1000 samples (or pixels) where those pixels have valid 

GEDI data and main algorithm retrieved MODIS LAI data for JJA and DJF months.  

The GEDI instrument can struggle when producing a canopy top height over shorter LC types with 

bare or sparse vegetation (Tang and Armston 2019) and is out-performed over short vegetation 

when compared to ICESat-2 (Zhu et al., 2023). Therefore, we only evaluate pixels that are based 

on tall vegetation land cover types (canopy height > 2 m) in this study (Table 1) and the 

implications are further discussed in Section 4. 

 

Name  IGBP Class Description  N 

Evergreen Needleleaf 

Forests (ENF) 
1 

Dominated by evergreen conifer trees (canopy  

>2m). Tree cover >60%.  
5.52*104 

Evergreen Broadleaf 

Forests (EBF) 
2 

Dominated by evergreen broadleaf and palmate trees 

(canopy >2m). Tree cover >60%.  
4.87*103 

Deciduous Broadleaf 

Forests (DBF)  
4 

Dominated by deciduous broadleaf trees (canopy  

>2m). Tree cover >60%.  
1.03*105 

Mixed Forests (MXF) 5 
Dominated by neither deciduous nor evergreen (40-60% 

of each) tree type (canopy >2m). Tree cover >60%.  
3.87*104 

Woody Savannas (WSAV) 8 Tree cover 30-60% (canopy >2m).  1.31*105 

Savannas (SAV) 9  Tree cover 10-30% (canopy >2m).  5.90*104 

Table 1. The name, IGBP class, and description of tall vegetation land cover types with canopy height > 2 m. The last 

column presents the number of valid 500 m pixels for the seasonal LAI and LC analyses in this study.  

 

When we address the impact of snowpack on the wintertime MODIS LAI retrieval, we use the UA 

SD product to compute a 4-day average SD which is used to determine whether a pixel is snow-

covered (SC) or non-snow-covered (NSC).  The 4-day average SD is computed by averaging the 

SD at each 4-km UA pixel from the MODIS date of collection and the three prior days (Knyazikhin 

https://nsidc.org/data/nsidc-0719
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et al., 1999). The 4-day UA SD value is then mapped back to the 500 m MODIS and GEDI grids 

so that all analyses are performed for 500 m grids (or pixels) in this study. We use a threshold of 4 

cm SD to differentiate between SC and NSC conditions following He et al. (2023). Recognizing 

this threshold is empirical, we perform sensitivity tests at 10 cm and 20 cm snow depths and find 

that our results are insensitive.  

3. Results 

a) Evaluation of MODIS IGBP Land Cover Type 

The MODIS LAI retrieval uses LC type as one of the primary inputs, we first assess the quality of 

the IGBP LC data by using the GEDI L2B data. The IGBP LC classes can be generally defined by 

using canopy height and canopy cover fraction for each respective class (Table 1). Figure 1A 

depicts the use of summertime GEDI canopy cover to evaluate the MODIS IGBP LC pixels, where 

evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf (DBF) 

and mixed forest (MXF) pixels from MODIS are potentially misclassified if the GEDI canopy 

cover is less than 60%. MODIS Woody savannas (WSAV) are labeled as potentially misclassified 

where pixels are less than 30% or greater than 60% covered by canopy and for MODIS savannas 

(SAV) where the GEDI canopy cover is greater than 30%. The percentage of misclassified pixels 

is surprisingly high, greater than 40% for four LC types, with the lowest percentage for DBF.  

 

Figure 1. (A) the percentage of MODIS IGBP Land cover pixels that are misclassified according to the summertime 

GEDI canopy cover and (B) distribution of summertime GEDI canopy cover for evergreen needleleaf forest (ENF) 

pixels analyzed in the study. The shaded light green region represents the IGBPôs range for the correct canopy cover 

based on their classification (Table 1).    

 


